
VIBRATIONAL PROPERTIES OF

DISORDERED SYSTEMS

THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY (SCIENCE)

OF THE

UNIVERSITY OF JADAVPUR

AFTAB ALAM

SATYENDRANATH BOSE NATIONAL CENTRE
FOR BASIC SCIENCES

JD BLOCK, SECTOR 3, SALT LAKE CITY
KOLKATA 700 098, INDIA

OCTOBER, 2006



i

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the thesis entitled Vibrational properties of disordered sys-

tems submitted by Aftab Alam, who got his name registered on June 29, 2004 for the

award of Ph.D. (Science) degree of Jadavpur University, is absolutely based upon

his own work under the supervision of Professor Abhijit Mookerjee at S. N. Bose

National Centre For Basic Sciences, Kolkata, India and that neither this thesis nor

any part of it has been submitted for any degree/diploma or any other academic award

anywhere before.

ABHIJIT MOOKERJEE

Senior Professor,

Head, Condensed Matter Physics Group,

Satyendranath Bose National Centre For Basic Sciences,

JD Block, Sector 3, Salt Lake City, Kolkata 700 098

India

Date :



ii

Acknowledgments

I am very happy to express my gratitude to Prof. Abhijit Mookerjee who has been a

wonderful thesis adviser. His patience and persistence, insights into various problems,

critical thinking and insistence of clarity have been most useful and inspiring. Working

with him has been a rich and rare experience and I am indebted to him for reasons much

beyond the pages of this thesis.

I would like to express my thanks to my collaborators with whom I had interacted

directly at work. I am grateful to Dr. Subhradip Ghosh of Indian Institute of Technology,

Guwahati, Assam for his active involvement in the work on first-principles calculation

of the vibrational properties of disordered alloys. I am thankful to Dr. Tanusri Saha-

Dasgupta of S N Bose National Centre for her fruitful collaboration and continued interst

in the work on phase stability of disordered hcp-alloys.

I would like to thank Prof. Ole Krogh Andersen of Max-Planck Institut, Stuttgart,

Germany for a months visit to his place and an enthusiastic discussion on NMTO-method

and maximally localized wannier function. I also would like to thank the University of

Colorado, Boulder, USA for giving me the opportunity to present some of my very recent

work in the 16th Symposium on Thermophysical Properties held at their place.

I would like to thank my colleagues : Durga (now at Ames. Lab.), Kamal (at Max-

Planck Institute, Halle, Germany), Ainul-Huda (Lecturer in a college at Bangladesh ),

Kartick as well as Atish, Monodeep, Mukul, Moshiour and Shreemoyee of our centre. I

have had a nice time with many friends in the institute - Ankush, Soumen, Prasad, Malay,

Kuldeep, Priya, Satamita, Shantanu, Rahul, Irfan and Rashidul have been particularly

close. It has been fun interacting with them and other students over all these years.

I would like to acknowledge financial support from the Council of Scientific and In-

dustrial Research (CSIR), Government of India during the period of this work.

My sincerest thanks go to my parents, sister and especially to my father for sharing

my dreams and for giving me encouragement to work for my goal.



iii

List of Publications

1. Vibrational properties of phonons in random binary alloys : An aug-

mented space recursive technique in k-space representation

Aftab Alam and Abhijit Mookerjee

Phys. Rev. B 69 024205 (2004).

2. Behaviour of phonon excitations in disordered alloys

Aftab Alam and Abhijit Mookerjee

Proceedings of the DAE Solid State Physics Symposium Vol. 49, 590-591 (2004).

3. Inelastic neutron scattering in random binary alloys : An augmented

space approach

Aftab Alam and Abhijit Mookerjee

Phys. Rev. B 71 094210 (2005).

4. Lattice thermal conductivity of disordered binary alloys

Aftab Alam and Abhijit Mookerjee

Phys. Rev. B 72 214207 (2005).

5. Response functions in disordered alloys : an approach via the augmented

space recursion.

Kartick Tarafder, Kamal K. Saha, Aftab Alam and Abhijit Mookerjee

Journal of Physics : conference series 29 27-38 (2006).

6. Lattice thermal conductivity of disordered NiPd and NiPt alloys : A

numerical study

Aftab Alam and Abhijit Mookerjee

Journal of Physics : Condens. Matter 18 4589-4608 (2006).

7. An augmented space approach to the study of phonons in disordered

alloys : Comparison between the itinerant coherent-potential approxi-

mation and the augmented space recursion

Aftab Alam, Subhradip Ghosh and Abhijit Mookerjee

(Communicated to Phys. Rev. B) : (Cond-mat/0610391 )

0The contents of the paper with serial number (5) is not included in this thesis.



iv

Contents

1 Overview of lattice dynamics calculations 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Lattice Green function and dispersion curves . . . . . . . . . . . . . . . . . 5

1.3 Experimentally observed quantities . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Coherent structure factors and phonon lifetimes . . . . . . . . . . . 6

1.3.3 Inelastic Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 The Recursion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Termination of the Continued Fraction . . . . . . . . . . . . . . . . 11

1.4.2 Block Recursion and the Self Energy Matrix . . . . . . . . . . . . . 13

2 Configuration Averaging in Disordered systems 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Mean field theories of disorder : an outline . . . . . . . . . . . . . . . . . . 17

2.2.1 The Virtual Crystal Approximation . . . . . . . . . . . . . . . . . . 18

2.2.2 The Coherent Potential Approximation : its limitations and gener-

alizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The Augmented Space Formalism . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 The Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Augmented Space Theorem . . . . . . . . . . . . . . . . . . . . . . 24

3 Behavior of phonon excitations in random binary alloys 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The augmented space formalism for phonons . . . . . . . . . . . . . . . . . 29

3.3 Dispersion Relations and disorder induced line-widths . . . . . . . . . . . . 36

3.4 Ni55Pd45 face-centered cubic binary alloy (Strong Mass Disorder) . . . . . . 38

3.5 Ni88Cr12 binary alloy (Strong Force constant disorder) . . . . . . . . . . . . 42

3.6 Ni50Pt50 alloy (Strong Mass and Force constant disorder) . . . . . . . . . . 45



v

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 The Itinerant CPA and Augmented Space Recursion 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 The Itinerant CPA and Augmented space recursion . . . . . . . . . . . . . 51

4.3 First principles calculations of force constants in alloys . . . . . . . . . . . 54

4.3.1 Density functional perturbation theory . . . . . . . . . . . . . . . . 55

4.3.2 Random alloy force constants from DFPT . . . . . . . . . . . . . . 55

4.3.3 Details of first-principles calculations . . . . . . . . . . . . . . . . . 56

4.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Inelastic neutron scattering in random binary alloys 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 The Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 A generalized multiple scattering diagram approach . . . . . . . . . . . . . 73

5.4 Coherent and Incoherent Inelastic scattering cross sections . . . . . . . . . 80

5.5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Ni55Pd45 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.2 Ni50Pt50 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Thermal transport in disordered binary alloys 94

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Lattice Thermal Conductivity : A Kubo Greenwood formulation . . . . . . 96

6.3 Effects of disorder scattering correction : A scattering diagram approach . 99

6.3.1 Configuration averaging of lattice thermal conductivity . . . . . . . 101

6.3.2 The vertex correction . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Configuration averaged thermal diffusivity . . . . . . . . . . . . . . . . . . 115

6.5 Details of Numerical Implementation . . . . . . . . . . . . . . . . . . . . . 117

6.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6.1 NiPd alloy : Strong mass and weak force constant disorder. . . . . . 118



vi

6.6.2 NiPt alloy : Strong mass and force constant disorder. . . . . . . . . 126

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 An assessment of the work and future plans 135

7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Figures

2.1 Schematic diagram illustrating spatial ergodicity. Each subsystem shown

here resembles a configuration when the size diverges. The composition

shown here is 45% - 55% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 A schematic diagram for the self-consistency of the CPA . . . . . . . . . . 19

3.1 Total coherent structure factors in different directions with different branches

for Ni55Pd45 . In each of the different directions and branches, the various

curves indicate the total structure factors for various ζ values starting from

the lowest value to the edge of the Brillouin zone. In [ζ 0 0] direction T1

and T2 modes are degenerate, in [ζ ζ 0] direction L and T1 modes are

degenerate and in [ζ ζ ζ] direction all the three modes are degenerate. The

y-axis is in an arbitrary scale with heights scaled to the maximum height.

Different curves for different ζ values are shifted along the x-axis in order

to facilitate vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Ni55Pd45

calculated from recursion (solid line). The force constants used are given

in the text. The filled circles are the experimental data [Kamitakahara and

Brockhouse, 1974] . In all the three panels the thin dotted lines span the

FWHM’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Full widths at half-maximum for the NiPd alloy as function of frequency

for different directions in k-space and different modes without (left) and

with (right) the inclusion of the scattering length fluctuation. The filled

circles along with the error bars are the experimental data [Kamitakahara

and Brockhouse, 1974] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Ni88Cr12

calculated from recursion (solid line). The force constants used are given

in the text. The filled circles are the 2 CPA results of R.P.Singh’s thesis

1982 . In all the three panels the thin dotted lines span the FWHM’s . . . 44

vii



viii

3.5 Full widths at half-maximum for the NiCr alloy as function of frequency

for different directions in k-space and different modes. . . . . . . . . . . . . 45

3.6 Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Ni50Pt50

calculated from recursion . The force constants used are given in the text.

The solid lines are the L-branch in all the three panels, the dashed lines

are the T-branch in the left and right panels. In the [ζ ζ 0] direction the

dashed line indicate the T1 branch while the dot-dashed line indicate the

T2 branch. The filled circles are the ICPA results [Ghosh et al 2002]. In

all the three panels the thin dotted lines span the FWHM’s. . . . . . . . . 46

3.7 Full widths at half-maximum for the NiPt alloy as function of frequency for

different directions in k-space and different modes including the scattering

length fluctuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Fe50Pd50

alloy. The upper panel correponds to the ASR results however the lower

panel to the ICPA results. The filled circles are the experimental data

Mahaddene et al 2004. The force constants used are given in Table 4.1. . 58

4.2 Partial and total structure factors calculated in the ICPA for various ζ-

values along the [ζ, 0, 0] and [ζ, ζ, ζ] directions in Fe50Pd50 alloy. The solid

line are the total contribution, the dotted lines are the Fe-Pd spectra,

the long-dashed lines are the Fe-Fe spectra, and the dot-dashed lines are

the Pd-Pd contributions. The type of mode is labelled along a particular

symmetry direction. The force constants used are given in Table 4.1. The

details are given in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Fe50Pd50

alloy. The upper panel correponds to the ASR results however thelower

panel to the ICPA results. The filled circles are the experimental data

Mahaddene et al 2004. The error bar in the ASR result basically represents

the full widths at half maxima (FWHM) at various ζ values. The force

constants used are given in Table 4.2. . . . . . . . . . . . . . . . . . . . . 61

4.4 Same as Fig. 4.2 but with the force constants of Table 4.2. Other details

are given in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Phonon density of states for Fe50Pd50 alloy. The upper and lower panel

shows ICPA and ASR results respectively. The force constants used are

that of experiment given in Table 4.2. . . . . . . . . . . . . . . . . . . . . . 64



ix

4.6 Disorder-induced FWHM’s vs wave vector (ζ) for Fe50Pd50 alloy. The up-

per and lower panels show ASR and ICPA results respectively. The force

constants used are given in Table 4.2. . . . . . . . . . . . . . . . . . . . . 65

4.7 Total coherent structure factors in different directions with different branches

for Fe50Pd50 alloy. The upper and lower box shows ASR and ICPA results

respectively. In each of the different directions and branches, the various

curves indicate the total structure factors for various ζ values starting from

the lowest value to the edge of the Brillouin zone. For the ASR result, the

T1 and T2 modes are degenerate along [ζ00] direction, L and T1 modes

are degenerate along the [ζζ0] direction, however all the three modes are

degenerate along the [ζζζ] directions. In the ICPA result, non of the modes

are degenerate. Such differences are hidden inside the structure of two dif-

ferent calculations. In both the boxes, the different curves for different ζ

values are shifted along the x-axis in order to facilitate vision. . . . . . . . 66

5.1 Bond coherent potential approximations . . . . . . . . . . . . . . . . . . . 71

5.2 Our model, where the correlation between bonds arises because of the com-

mon vertex which is random . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 The scattering vertices for the averaged Green function . . . . . . . . . . . 73

5.4 The scattering diagrams for n=2. . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 The topologically distinct scattering diagrams for n=3. . . . . . . . . . . . 76

5.6 The topologically distinct classes of scattering diagrams for n=4. . . . . . 77

5.7 Structure of skeleton diagrams for the self-energy . . . . . . . . . . . . . . 78

5.8 Details of some skeleton diagrams for the self-energy . . . . . . . . . . . . 79

5.9 The scattering vertices related to the fluctuations in W . . . . . . . . . . . 81

5.10 The scattering diagrams for the inelastic scattering cross-section . . . . . . 82

5.11 The coherent scattering cross section in different directions for Ni55Pd45.

In each of the different directions, the various curves indicate the cross

sections for various ζ values starting from the lowest value to the edge of

the Brillouin zone. The y-axis is in an arbitrary scale with heights scaled

to the maximum height. Different curves for different ζ values are shifted

along the x-axis in order to facilitate vision. . . . . . . . . . . . . . . . . . 87



x

5.12 The incoherent scattering cross sections in different directions for Ni55Pd45

alloy with ΦNi−Pd = 0.7 ΦNi−Ni . In each of the different directions, the

various curves indicate the cross sections for various ζ values starting from

the lowest value to the edge of the Brillouin zone. . . . . . . . . . . . . . . 89

5.13 Same as Fig. (5.11) but for Ni50Pt50 alloy . . . . . . . . . . . . . . . . . . 90

5.14 Same as Fig. (5.13) but for Ni50Pt50 alloy. . . . . . . . . . . . . . . . . . . 91

5.15 The incoherent scattering cross section for Ni50Pt50. The left panel, middle

panel and right panel display the block recursion result, experimental curve

and the CPA result respectively. . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 The scattering vertices for the averaged Green function . . . . . . . . . . . 100

6.2 The scattering vertices associated with the random current terms . . . . . 103

6.3 The VCA or zero-th order approximation for � κ(z1, z2) �. . . . . . . . . 104

6.4 Few examples of scattering diagrams where no disorder line joins the two

phonon propagators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Scattering diagrams contributing to effective heat current. . . . . . . . . . 105

6.6 The scattering diagrams associated with joint fluctuations of one current

term and two propagators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 The scattering diagrams associated with joint fluctuations of two current

terms and one propagator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.8 The scattering diagrams leading to vertex correction. . . . . . . . . . . . . 110

6.9 The Bethe-Salpeter equation for the thermal conductivity . . . . . . . . . . 110

6.10 The ladder scattering diagrams for the vertex correction. . . . . . . . . . . 111

6.11 The structure of infinite series of ladder diagrams contributing to the cor-

relation function � κ(z1, z2) �. . . . . . . . . . . . . . . . . . . . . . . . . 114

6.12 Configuration averaged lattice thermal conductivity vs phonon frequency

ν (THz) for Ni50Pd50 disordered alloy. The red line and black line shows

the conductivity using the average VCA current and effective current (con-

sisting of average VCA current + disorder corrections + vertex correction)

respectively. The green line in indicates the configuration averaged joint

density of states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



xi

6.13 Thermal conductivity vs temperature T(K) for NiPd alloys and Amorphous

Si. The top panel shows our results on the lattice conductivity for Ni99Pd01

alloy at three different frequency cut-off ν. The middle panel shows the

lattice conductivity for amorphous Si [Feldman et al 1993] at three different

cut-off frequency, while the panel at the bottom shows the experimental

data [Farrell and Greig 1969] for the total thermal conductivity (= lattice

+ electronic contribution) of the same Ni99Pd01 alloy. . . . . . . . . . . . 121

6.14 Residual or impurity contribution of the electronic part of the thermal

conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.15 κ vs T 2 for low temperatures for 50-50 NiPd alloy . . . . . . . . . . . . . . 123

6.16 The configuration averaged lattice thermal conductivity vs phonon fre-

quency ν (THz) at different temperatures T for Ni50Pd50 alloy. . . . . . . . 124

6.17 Frequency dependence of lattice thermal conductivity for various alloys

Ni1−xPdx at T=100 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.18 The configuration averaged thermal diffusivities D(ν) for Ni1−xPdx alloys.

(a) x=0.1; (b) x=0.3; (c) x=0.5; (d) x=0.7; (e) x=0.9.The broad line on

the frequency axis shows the extent of the vibrational spectrum. . . . . . . 126

6.19 The behaviour of thermal diffusivity as a function of (νc − ν)α . . . . . . . 127

6.20 The position of the mobility edge (bottom) and the percentage of mobile

phonon states (top) as a function of the alloy composition for NiPd alloy. . 128

6.21 Same as Fig. (6.12) but for Ni50Pt50 disordered alloy. . . . . . . . . . . . . 129

6.22 The averaged lattice thermal conductivity vs temperature T(K) at various

cut-off frequency νcutoff for Ni50Pt50 alloy. . . . . . . . . . . . . . . . . . . 130

6.23 Lattice thermal conductivity vs Pt-concentration for various temperature

T at phonon frequency ν = 1.05 THz. . . . . . . . . . . . . . . . . . . . . 131

6.24 Same as Fig. (6.18) but for Ni50Pt50 alloy. . . . . . . . . . . . . . . . . . . 132

6.25 Same as Fig. (6.20) but for Ni50Pt50 alloy. . . . . . . . . . . . . . . . . . . 133



List of Tables

3.1 General properties of fcc Ni, Pd, Pt and Cr. The force constants for Ni,

Pd and Pt are taken from Dutton et al 1972 and that for Cr is taken from

Mookerjee and Singh 1988 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Real-space nearest neighbor force constants for Fe50Pd50 obtained by DFPT

calculations on the artificial ordered structure. The units are dyn cm−1. . . 57

4.2 Real-space nearest neighbor force constants for Fe50Pd50 obtained from

experimental data Mahaddene et al 2004 on L10 structure at 860K. The

units are dyn cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xii



Chapter 1

Overview of lattice dynamics calculations

1.1 Introduction

The subject matter of this thesis is the lattice vibrational properties of disordered binary

alloys. The varied chemical and physical properties of alloys pose a stimulating challenge

to physicists and, for a thorough understanding of these diverse physical phenomena, a

sound theoretical frame work is necessary. Disorder in alloys may appear in various forms

like topological, substitutional, positional and so on. In this work we shall be concerned

with substitutional disorder only. Atoms in alloys with substitutional disorder sit on an

underlying crystalline lattice but the lattice sites are occupied by the constituent atoms

randomly with varying degree of statistical correlations.

Let us focus our attention on disordered binary alloys. When atoms of different masses

and force constant matrices alloy substitutionally in a crystal, there are, in general, three

types of changes to the system Hamiltonian : diagonal disorder arising from the mass

difference mA - mB; off-diagonal disorder arising from differences in the force constant

matrix Φij (where j is some neighbouring sites of i) which can take values ΦAA
ij , ΦAB

ij or

ΦBB
ij ; and environmental disorder arising from the diagonal term of the force constant

matrix Φii which is related to its environment by the sum rule Φii = −∑k Φik. Unlike

the electronic problem, such types of disorder are coupled in the phonon problem. This

necessitates careful reformulation of the usual ideas of dealing with disorder problems

with statistically independent variables.

A discussion of the vibrational properties of alloys will certainly require a digression

on lattice dynamics calculations. We shall frame a brief overview of the phonon problem.

1



Chapter 1. Vibrational properties of disordered systems 2

Let us begin by considering system consisting of Nc ion-cores bonded in a solid by Ne

valence electrons. The many body Hamiltonian is :

H =
Nc∑

I=1

P 2
I

2MI
+

Ne∑

i=1

p2
i

2me
+ Vee({r}) + VeN({r}, {R}) + VNN({R})

where Vee, VNN and VeN are the Coulomb interactions between the electrons, the ions

themselves and between the electrons and ions. We can group the terms as follows :

H = He + TN({R}) + VNN ({R})

where TN is the kinetic energy of the ion-cores.

Schrodinger equation for the total Hamiltonian H is :

H Ψ({r}, {R}) = E Ψ({r}, {R}) (1.1)

Since the time scale corresponding to electron dynamics is much smaller than that of the

ions, we can carry out the Born-Oppenheimer or adiabatic approximation which assumes

that during the short time the electron dynamically evolves, the ions are frozen or sta-

tionary. This allows us to solve the electronic problem with a fixed ion-core configuration.

He φn({r}, {R}) = En({R}) φn({r}, {R}) (1.2)

Using the separability condition on the wave-function we may write :

Ψ({r}, {R}) =
∑

n

Θn({R})φn({r}, {R}) (1.3)

Substituting Eqn. (1.3) in Eqn. (1.1) we get

[
TN + Em({R}) + VNN({R})

]
Θm({R}) +

∑

n

Λmn({R}) Θn({R}) = E Θm({R}) (1.4)

where

Λmn({R}) =
∑

I

− h̄2

2MI

[
AI

mn

∂

∂RI
+

1

2
BI

mn

]

with

AI
mn = 〈φm|

∂

∂RI

|φn〉 BI
mn = 〈φm|

∂2

∂R2
I

|φn〉



Chapter 1. Overview of lattice dynamics calculations 3

The adiabatic approximation now neglects the second term in the right hand side of Eqn.

(1.4) : [
TN + Em({R}) + VNN ({R})

]
Θm({R}) = E Θm({R}) (1.5)

The effect of the term Λmn, which we have neglected under the adiabatic approximation

is to couple the nuclear states Θm({R}) pertaining to different electronic states and they

allow non-radiative transitions between the electronic states.

The Born-Oppenheimer Hamiltonian for the ion-cores is given by Eqn. (1.5) as :

HI =
Nc∑

I=1

P 2
I

2MI
+ Veff({R})

with potential energy

Veff({R}) = Em({R}) +
∑

I>J

Ze2

|RI − RJ |
(1.6)

The potential energy is a minimum for a configuration which is the equilibrium lattice.

In terms of the basis vectors a1,a2,a3 let the equilibrium position of the ions are denoted

by Ro as :

Ro
I = l1a1 + l2a2 + l3a3

where l1,l2,l3 are any set of integers (+ve, -ve or zero).

Now as a result of thermal fluctuations at finite temperatures, the constituent atoms

in a crystalline solid execute small oscillation about their equilibrium positions. Let the

displacement of atom from its equilibrium position be u(RI , t), so that the displaced

position is

RI = Ro
I + u(RI , t)

For small oscillations, we may expand the potential energy in Eqn. (1.6) in powers of

displacement. The series may be expected to converge rapidly if the displacements are

small compared to inter-atomic spacing.

Veff (R) = Veff(R0) +
1

2

∑

IJ

∑

µν

∂2Veff

∂uµ(RI)∂uν(RJ)

∣∣∣∣
0
uµ(RI)uν(RJ) + . . . (1.7)

This is the harmonic approximation. The equation of motion then becomes :

MI üµ(RI) = −∂Veff ({R})
∂uµ(RI)

= −
∑

J,ν

∂2Veff ({R})
∂uµ(RI)∂uν(RJ)

∣∣∣∣∣
o

uν(RJ) (1.8)



Chapter 1. Vibrational properties of disordered systems 4

Let us denote

Φµν(RI ,RJ) =
∂2Veff({R})

∂uµ(RI)∂uν(RJ)

∣∣∣∣∣
o

,

Φµν(RI ,RJ) are the force constants which satisfy the following conditions,

• Φµν(RI ,RJ) = Φνµ(RJ ,RI)

• The translational symmetry of the lattice requires

Φµν(RI ,RJ) = Φνµ(RI − RJ)

• If we wish to eliminate the uniform translation mode, then Eqn. (1.8) gives the

following condition on the force constants :

∑

J

Φµν(RI − RJ) = 0 ⇒ Φµν(0) = −
∑

J 6=I

Φµν(RI − RJ)

Let us choose a monochromatic oscillatory solution of Eqn. (1.8) as :

u(R, t) =
1√
N

ei(k.R−ωt)ε

This leads to the equation : [
Mω2 − D(k)

]
ε = 0 (1.9)

where D is a Hermitian matrix called the Dynamical matrix whose elements are given by

Dµν(k) =
∑

R

Φµν(R) e−ik.R

Equation (1.9) represents a set of three linear homogeneous equations in three unknown

εν (ν=1,2,3). The three solutions ωp(k) (p=1,2,3) for each value of k are obtained by

finding roots of the determinental Secular equation :

det(Mω2 − D) = 0

The relation between the frequency ω and the wave-vector k for a polarization index p is

known as the dispersion relation.

ω = ωp(k), p = 1, 2, 3
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1.2 Lattice Green function and dispersion curves

The basic problem of the theory of phonons in a most general 3-D realistic system is to

solve a secular equation of the form of Eqn. (1.9). The Green function corresponding to

the displacement vector ε is

Gnn(k, ω2) = 〈n|
(
Mω2 − D(k)

)−1 |n〉 (1.10)

where the mass operator M and the dynamical matrix operator D in terms of a tight

binding representation is given by

M =
∑

R

mRδµν PR

D =
∑

R

Dµν
RR PR +

∑

RR′

Dµν
RR′ TRR′ (1.11)

Equation (1.10) can also be expressed in the form

Gnn(k, ω2) = 〈ns|
(
ω2I − H(k)

)−1 |ns〉 (1.12)

where ns = M−1/2|n〉 and H(k) = M−1/2DM−1/2.

The spectral function can be calculated by just taking the imaginary part ofGnn(k, ω2).

The dispersion relation can then be obtained by simply finding the peak positions of this

spectral function for each wave-vector k along a particular symmetry direction for the

concerned lattice.

1.3 Experimentally observed quantities

1.3.1 Density of States

The vibrational (phonon) density of states ρ(ω) is related to the mass weighted displacement-

displacement Green function as

ρ(ω) = −2ω

3π

∑

λ

∫

BZ

d3k

8π3
=m

[
Tr{Gλ(k, ω2)}

]
(1.13)

where λ labels the particular normal mode branch, the integration is over the entire Bril-

louin zone (BZ) and G is given by Eqn. (1.12). The expression holds good if one gets the
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normal mode easily [Maradudin et al 1971]. But in disordered lattices, the identification

of normal modes seems to be difficult because of lack of translational invariance. The

evaluation becomes even more difficult in the reciprocal space representation. However

under the theoretical framework of our formalism combined with the recursion method, it

comes out to be tractable with quite a good accuracy. The recursion method is explained

in the following Section 2.4.

1.3.2 Coherent structure factors and phonon lifetimes

Experimental determination of the phonon dispersion and line widths are from the coher-

ent scattering structure factors defined as

Sλ
coh(k, ω

2) = − 1

π
=m

[
Tr{b Gλ(k, ω2)b}

]

where b stands for the scattering length operator related to the scattering length of

the nucleus of atoms. The actual dispersion curves comparable to the experiments are

obtained by finding the peak positions for these structure factors for each phonon modes

along various symmetry directions.

The disorder induced effects make the coherent structure factors look like Lorenztians.

The phonon lifetimes are obtained by just taking the inverse of full widths at half maxima

of these Lorentzian shaped structure factors.

1.3.3 Inelastic Neutron Scattering

The formal expression for the inelastic cross-section for the scattering of thermal neutrons

from an initial state labelled by k to a final state k′ with a change of energy E = h̄w =
h̄2

2Mn
(k2−k′2) and a change of wave-vector q = k−k′ +Q , where Q is a reciprocal lattice

vector is:

d2σ

dΩdE
=

1

2Nh̄

k′

k

∑

R

∑

R′

∑

αβ

qαqβ
(
WR =m Gαβ

RR′(ω) WR′

)
n(ω) exp {iq · (R− R′)}

where WR = wR {exp[−(1/2)〈(q · uR)2〉th]} and wR is the scattering length of the nucleus

of an atom sitting atR, its equilibrium position, and uR(t) is its deviation from equilibrium

at the time t. n(ω) is the Bose distribution function.
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The total inelastic neutron scattering cross section consists of a coherent and inco-

herent part. The coherent part is related to a weighted average over the displacement-

displacement correlation function. It allows a direct measurement of G(k, ω) and gives the

most detailed experimental information about phonons in mixed crystals. However the

incoherent scattering cross section is related to a weighted average of the single site Green

function and hence to the density of states. The separation of the total inelastic neu-

tron scattering cross section into the coherent and incoherent part for a perfect crystal is

quite straight forward and the theory has been set up on a rigorous basis [Sjölander 1964,

Lovesey and Marshall 1971]. However we must make the same statement for disordered

alloys with more care. This is because the theory of neutron scattering in random alloys

require two basic inputs : first is the formulation of the problem and second its actual

numerical implementation in realistic situations. In chapter 5 we shall discuss a multiple

scattering diagram technique to suggest how to separate the coherent and incoherent part

of the total inelastic scattering cross section for disordered binary alloys.

1.3.4 Thermal Conductivity

The Kubo formula which relates the optical conductivity to a current-current correlation

function is well established. For the case of an electron in an electro-magnetic filed, the

Hamiltonian contains a term j · A(r, t) which drives the electrical current. For thermal

conductivity we do not have a similar term in the Hamiltonian which drives a heat cur-

rent. The derivation of a Kubo formula in this situation requires an additional statistical

hypothesis, which states that a system in steady state has a space dependent local tem-

perature T (r) = [κBβ(r)]−1. The expression for the lattice thermal conductivity has been

discussed in great detail by Allen and Feldman 1993. Keeping in mind the heat conduc-

tion through a solid due to the existence of a temperature gradient, the formal expression

for the lattice thermal conductivity is given by the Kubo-Greenwood formula as :

κ(ω, T ) =

1

3πT

∑

µ

∫
dω′

∫
d3k

8π3
Tr
[
Ŝµ(k, T )=m{G(k, ω′)} Ŝµ(k, T ) =m{G(k, ω′ + ω)}

]

(1.14)
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where the summation is over the direction indeces, the integration is over the entire

Brillouin zone, Ŝ is the heat current operator given by the following expression :

Ŝµ
γγ′(k) =

h̄

2
(ωkγ + ωkγ′) vµ

γγ′(k, T )

where ω’s are the eigen-frequencies of various modes of vibration labelled by γ, γ ′. k is the

reciprocal wave-vector and v is the phonon group velocity which depends on temperature

via the Bose distribution function n(ω, T ). Also G is the Green matrix in the reciprocal

space representation.

For disordered materials, we have to calculate the configuration averaged lattice ther-

mal conductivity, which require the average of the product of four random functions as

in the right hand side of Eqn. (1.14). The evaluation of such an average purely analyt-

ically is extremely cumbersome, however a multiple scattering diagram approach makes

this calculation quite simpler. We shall discuss this calculation in detail in chapter 6 for

disordered binary alloys.

Although a direct comparison of the theoretical result (based on the lattice conduc-

tivity) with the experimental data for the thermal conductivity is difficult, because the

experimental thermal conductivity also has a component arising out of the contribution

from electrons. We have nevertheless compared the two results in chapter 6 subtracting

a hypothetical electronic contribution using the Wiedemann-Franz law in our theoretical

framework.

1.4 The Recursion Method

We shall now describe a powerful technique for the calculation of the Green function

and the related quantities described in the previous section. The Recursion method

was introduced by Haydock et al 1972 to deal with systems without lattice translation

symmetry and has since proved to be one of the important calculational techniques in

this area.

It has been argued by Heine (Heine 1980) that many of the properties of solids are de-

pendent on the local chemistry of the atoms constituting the solid. He enunciated a black

body theorem for such properties, which essentially states that the very far environment
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of an atom in solid has very little influence on its local chemistry. In other words the

physics is better understood by means of a solution that explicitly accounts for the role

of local environment. The recursion method introduced by Haydock et al 1972 is a lucid

approach in this direction. It expresses the Hamiltonian in a form that couples an atom

to its first nearest neighbours, then through them to its distant neighbours and so on.

The central idea in this method is to calculate the physical quantities of interest by

expressing themselves directly or indirectly as a diagonal matrix element of the Green

operator. The recursion method is simply a tool for the calculation of the diagonal

matrix element of the resolvent operator by transforming the original Hamiltonian to a

tridiagonal representation. Starting with |φi,α〉 = |0〉, an initial phonon mode basis or a

suitable combination of modes, which define the physical quantity to be calculated at the

site i, we construct a new state |1〉 as

b1|1〉 = H|0〉 − a0|0〉

The whole set of orthogonal states are generated by the following three term recurrence

relation :

bn+1|n+ 1〉 = H|n〉 − an|n〉 − bn|n− 1〉 (1.15)

an and bn are the coefficients to orthogonalize H|n〉 to the preceding vectors |n〉, |n− 1〉
and bn+1 is the coefficient to normalize |n+ 1〉 to unity. b0 is assumed to be unity. In the

new basis the Hamiltonian matrix elements are

〈n|H|n〉
〈n|n〉 = an

〈n− 1|H|n〉
[〈n|n〉〈n− 1|n− 1〉]1/2

= bn 〈n|H|m〉 = 0 (1.16)

The Hamiltonian H in the new basis has the following tridiagonal form :




a0 b1 0 0 0 . . .

b1 a1 b2 0 0 . . .

0 b2 a2 b3 0 . . .

0 0 b3 a3 b4 . . .

0 0
. . .

. . .
. . .




For systems where the lattice symmetry breaks down, we can not apply Bloch’s theorem,

so we take recourse to an alternative approach to calculate the vibrational properties
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instead of solving Schrodinger equation. In this approach, properties are extracted from

the corresponding Green function of the system which is defined as the resolvent of the

Hamiltonian :

G(z) = (zI − H)−1

In the recursion method, we use the same approach and calculate the diagonal elements

of the Green function which is directly related to the density of states, spectral function,

structure factors etc. and most of the material properties follow thereafter. The starting

state of recursion is then :

|0〉 = |R, α〉

where R indicates the position of the R-th unit cell and α the Cartesian direction. The

diagonal element of the Green function by definition is,

G00(E) = 〈0|(EI− H)−1|0〉 =
M1(E)

M0(E)
=

1

R1(E)

where M0 and M1 are the determinant of the matrix (EI − H)−1 (represented in the

new basis {|n〉}) and the determinant of the matrix obtained from the original matrix by

deleting the first row and column respectively.

Using Cauchy’s expansion theorem,

Mn(E) = (E − an)Mn+1 − b2n+1Mn+2

Rn+1 = E − an − b2n+1

Rn+2
(1.17)

This suggests that it is possible to express the Green function as a continued fraction

expansion characterized by a set of coefficients,

G00(E) =
1

E − a0 −
b21

E − a1 −
b22

E − a2 −
b23

E − a3 −
b24
. . .

(1.18)

where the coefficients {an} and {bn} are the ones appearing in the tridiagonal matrix H.
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1.4.1 Termination of the Continued Fraction

The recursive calculation described earlier gives rise to a set of continued fraction coeffi-

cients {an,bn}. In any practical calculation we can go only up to a finite number of steps,

consistent with our computational process. If one tries to model an infinitely extended

system, the recursion algorithm after n-steps contains contributions only from a central

cluster of O(n3) atoms. For numerical purpose, this limits the number of atoms that can

be modeled, and also implies that one is always studying a finite system. The terminat-

ing continued fraction obtained in this process yields a number of isolated bound states,

appropriate for a finite cluster. For most purpose this is an unphysical approximation

to the problem under investigation and one needs to overcome these finite size effects

by embedding the cluster in an infinite medium. Mathematically a suitable terminator

should be appended to the continued fraction so as to obtain a Green function with a

branch cut, rather than a set of simple poles. Several terminators are available in the

literature which reflects the asymptotic properties of the continued fraction expansion of

the Green function accurately. The advantage of such a termination procedure is that the

approximate resolvent retains the analytic properties of the Green function, called the

Herglotz properties which are as follows :

• All the singularities of G(z) lie on the real z-axis.

• =m [G(z)]>0 when =m (z)<0 and =m [G(z)]<0 when =m (z)>0.

• G(z)→ 1/z when Re(z)→ ∞ along the real axis. Terminator preserves the first

2n-moments of the density of states exactly.

In case the coefficients converge, i.e. if |an − a| ≤ ε, |bn − b| ≤ ε for n ≥ N , we may

replace {an, bn} by {a, b} for all n ≥ N . In that case the asymptotic part of the continued

fraction may be analytically summed to obtain :

T (E) = (1/2)
(
E − a−

√
(E − a)2 − 4b2

)

which gives a continuous spectrum a− 2b ≤ E ≤ a+ 2b. Since the terminator coefficients

are related to the band edges and widths, a sensible criterion for the choice of these

asymptotic coefficients is necessary, so as not to give arise to spurious structures in our
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calculations. Beer and Pettifor 1984 suggested a sensible criterion : given a finite number

of coefficients, we must choose {a, b} in such a way so as to give, for this set of coefficients,

the minimum bandwidth consistent with no loss of spectral weight from the band. This

criterion is easily translated into mathematical terms. The delta functions that would

carry weight out of the band must then be situated exactly at the band edges. We

thus demand that the continued fraction diverge simultaneously at both the top and the

bottom of the band.

At the band edges : T (a± 2b) = ±b so,

� G(a± 2b) �=
b21/4

±b− 1

2
(a1 − a) − b22/4

±b− 1

2
(a2 − a) − b23/4

. . .
b2N/2

±b− (aN − a)

For a given a, the (N+1) eigenvalues of the finite tridiagonal matrix :



1
2
(a1 − a) 1

2
b2 0 . . . 0

1
2
b2

1
2
(a2 − a) 1

2
b3 . . . 0

0 1
2
b3 . . . . . . 0

. . . . . . . . . . . . 1√
2
bN

. . . . . . . . . 1√
2
bN (aN − a)




are values at which the Green function diverges. The maximum and minimum of this set

of eigenvalues are those values of b for which spectral weight has just split off from the

band. Thus our choice of a is that value for which the maximum eigenvalue is the largest

and the minimum the smallest. Since the continued fraction involves b2 then,

bc = sup
{a}

bmax(ac) = inf
{a}

|bmin(ac)|

With this choice the terminator T (E) has all the Herglotz properties required. Luchini

and Nex 1987 further modified this by replacing the “butt joining” {an, bn} to a, b by a

smooth linear interpolation :

ân, b̂n =





an, bn n < n1

(an(N − n) + a(n− n1)]/(N − n1) n1 ≤ n ≤ N

(bn(N − n) + b(n− n1)]/(N − n1) n1 ≤ n ≤ N

a, b n > N
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They argued that most of the possible spurious structures are removed by such interpo-

lation. In our work we have used these two ideas to estimate the terminator.

1.4.2 Block Recursion and the Self Energy Matrix

Although our initial focus during the ongoing work was on the Green function, coherent

structure factors, complex dispersion relation and phonon lifetimes (Chapter 4), we also

propose to study the inelastic neutron scattering cross section (Chapter 5) and the thermal

conductivity (Chapter 6) of disordered alloys. These further studies require the full Green

matrices and not only the diagonal elements (as discussed in the previous section). We

shall introduce here a generalization of the recursion method of Haydock et al 1972.

The block recursion technique had been introduced earlier by [Godin and Haydock 1988

, Godin and Haydock 1992] in the very different context for obtaining the scattering S-

matrix for finite scatterers attached to perfect leads. We shall borrow their ideas and

set up a block recursion in the space of vibrational modes in order to obtain the Green

matrices directly.

The recursion method essentially starts from a denumerably infinite basis and changes

the basis to one in which the dynamical matrix (or the Hamiltonian, in electronic prob-

lems) is tri-diagonal. In the block recursion we start from a matrix basis of the form :

{Ψ(n)
J,αβ}, where J is the discrete labeling of the lattice sites and the α, β labels the Carte-

sian directions (i.e. the modes of vibration). The inner product of such basis is defined

by :
(
Ψ(n),Ψ(m)

)
=

∑

J

∑

β′

Ψ
(n)†
αβ′,J Ψ

(m)
J,β′β = Nnm

αβ

We start the recursion with a state {Ψ(1)
J,αβ}. The remaining terms in the basis are recur-

sively obtained from :

∑

β′

Ψ
(2)
J,αβ′B

(2)†
β′β =

∑

J ′

∑

β′

HJα,J ′β′Ψ
(1)
J ′,β′β −

∑

β′

Ψ
(1)
J,αβ′A

(1)
β′β

∑

β′

Ψ
(n+1)
J,αβ′ B

(n+1)†
β′β =

∑

J ′

∑

β′

HJα,J ′β′Ψ
(n)
J ′,β′β −

∑

β′

Ψ
(n)
J,αβ′A

(n)
β′β −

∑

β′

Ψ
(n−1)
J,αβ′ B

(n)
β′β (1.19)

where H = M−1/2 D M−1/2 with M and D given by Eqns. (1.11).
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Orthogonalization of the basis gives :

∑

J

∑

β′

∑

J ′

∑

β′′

Ψ
(n)†
αβ′,J HJβ′,J ′β′′Ψ

(n)
J ′,β′′β′ =

∑

β′

Nnn
αβ′ A

(n)
β′β

In matrix notation, where matrices are in the vibrational mode (αβ) space :

A(n) =
(
Nnn

)−1 ∑

J

∑

J ′

Ψ
(n)†
J HJJ ′ Ψ

(n)
J ′ (1.20)

Next, we note that we had started with a orthogonal basis set of rank Jmax × αmax.

The above procedure merely gives Jmax basis sets. We still have orthogonality conditions

among the various columns of Ψ
(n)
J,αβ. In order to impose these conditions, consider

ΞJ,αβ =
∑

J ′

∑

β′

HJα,J ′β′Ψ
(n)
J ′,β′β −

∑

β′

Ψ
(n)
J,αβ′ A

(n)
β′β −

∑

β′

Ψ
(n−1)
J,αβ′ B

(n)
β′β

Construct three column vectors ξ
(β)
Jα out of the three columns of ΞJ,αβ and set about to

Gram-Schmidt orthonormalizing the set :

ξ
(1)
αJ = ψ

(1)
αJ B11 ⇒ B2

11 =
∑

αJ

ξ
(1)
Jα

∗
ξ

(1)
αJ

ξ
(2)
αJ = ψ

(1)
αJ B12 + ψ

(2)
αJ B22 ⇒ B12 =

∑

αJ

ψ
(1)
Jα

∗
ξ

(2)
αJ ; B2

22 =
∑

αJ

ξ
(2)
Jα

∗
ξ

(2)
αJ − B2

12

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

ξ
(m)
αJ =

m∑

k=1

ψ
(k)
αJBkm ⇒ Bkm =

∑

αJ

ψ
(k)
Jα

∗
ξ

(m)
αJ (k < m) ; B2

mm =
∑

αJ

ξ
(m)
Jα ξ

(m)
αJ −

m−1∑

k=1

B2
km

(1.21)

where m stands for the total number of vibrational modes.

We may now construct Ψ
(n+1)
J,αβ out of ψβ

Jα and note that Bkm is indeed the matrix

B(n+1)† we are looking for.

The Eqns.(1.19)-(1.21) show that we may calculate the matrices {A(n),B(n+1)} recur-

sively, noting that B(1) = I and B(0) = 0. In this new basis, the Hamiltonian is block

tri-diagonal and the Green matrix can be written as follows :

G(n) =
[
w2 I − A(n) − B(n+1)† G(n+1) B(n+1)

]−1

� G � = G(1) (1.22)
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The terminator which replaces the asymptotic part of the matrix continued fraction is

that which is used by Godin and Haydock 1992. We calculate the matrix coefficients up

to a n = N0 and approximate at coefficients > N0 by A and B. We then write for a

N � N0 :

G(N) =
[
(w2 − iδ)I

]−1

and then iterate :

G(n) =
[
w2I − A − B† G(n+1) B

]−1

for n > N0

A judicious choice of δ (0.001) and N (5000) gives a smooth density of states from the

diagonal part of the Green matrix. The self-energy follows from the Dyson equation :

Σ = g−1 − G−1 (1.23)



Chapter 2

Configuration Averaging in Disordered systems

2.1 Introduction

In this chapter we shall introduce the concept of averaging in configuration space and

also describe the augmented space method, which is a powerful technique for carrying

this out. In subsequent chapters we extend this formalism for application to the problem

of phonon excitations in disordered alloys. The concept of averaging over all possible

different states of a system is well understood both in quantum mechanics and statistical

physics. However for a disordered system, we have to carry out averages for physical

observables over different configurations. But the questions is, “ Why do we wish to carry

out such averages ? ”. The problem will be clearly understood if we analyze a specific

example. Suppose an experimentalist is carrying out an energy resolved photo-emission

study on a disordered metallic alloy. By varying the energy of his incident photon , he

can map out the density of states of valence electrons for the alloy. If he carry out the

experiment on ten different samples of the same alloy, he should obtain slightly different

results. This is because the alloy is random and different samples will have different

atomic arrangements of its constituents. What the experimenter actually observes is an

average result ; averaged over different realizable configurations of atomic arrangements

in the alloy. The same is true for other bulk properties like specific heat, conductivity and

different response functions. However if we measure local properties with local probes,

the situation is quite different. Configuration averaging will be meaningless if we wish to

look at the local properties.

Another point of interest is “ Why do we observe configuration averaged results even

16
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Figure 2.1: Schematic diagram illustrating spatial ergodicity. Each subsystem shown here

resembles a configuration when the size diverges. The composition shown here is 45% -

55%

in a single sample ? ” To understand this, we must examine the idea of spatial ergodicity.

We visualize a macroscopically large system as made up of subsystems each of which

resembles a configuration of the system. Spatial ergodicity implies that in the limit of

size and the number of subsystems becoming infinitely large, the subsystems of a single

sample exactly replicates all its possible configurations. A global property which averages

over the subsystems becomes the same as the averages over all configurations. This is

schematically shown in Figure 2.1.

2.2 Mean field theories of disorder : an outline

In this section we shall briefly discuss the conventional mean-field theories for configura-

tional averaging. We shall also discuss the limitations of these theories and their probable

generalizations. Although it is not our intention to review these, only a brief description

will be given and we shall emphasize the merits and demerits of each of these approaches.

Among the various existing theories, we confine ourselves to the crudest approxima-

tion, namely the Virtual Crystal Approximation (VCA) and the most successful single-site

mean-field approximation : the Coherent Potential Approximation (CPA).
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We start from the secular equation for phonons :
(
Mω2 − D

)
ε = 0

The Green function G(ω2) corresponding to the displacement vector ε is

Gnn(ω2) = 〈n|
(
Mω2 − D

)−1 |n〉

where the mass matrix M and the dynamical matrix D in terms of Andersen tight binding

representation is given by :

M =
∑

R

mR PRδµν

D =
∑

R

Dµν
RR PR +

∑

RR′

Dµν
RR′ TRR′ (2.1)

M and D refers to the diagonal and off-diagonal parts of the secular matrix.

In general both the site diagonal and off-diagonal matrix element can be random. The

assumption of diagonal randomness is viable in the electronic problem, in cases where the

spatial extension of the tight-binding basis of representation is sufficiently small. However

off-diagonal disorder is certainly present in the problem of phonons, due to the randomness

in the dynamical matrices When the disorder in diagonal as well as off-diagonal part of

the Hamiltonian are of the same order and are correlated (as in the theory of phonons),

the problem is difficult to deal with.

2.2.1 The Virtual Crystal Approximation

In the VCA it is assumed that the random variations of mR and DRR′ (in Eq. 2.1) are very

small. The simplest possible approximation is to replace mR and DRR′ by their averages

� m� and � DRR′ �, so that :

MV CA
eff =

∑

R

� m�µ PR δµν

DV CA
eff =

∑

R

� DRR �µν PR +
∑

R

∑

R′ 6=R

� DRR′ �µν TRR′

The effective secular matrix is averaged and does not have any randomness. In this

approximation we clearly miss out any scattering caused by the random components of the

secular matrix about the average value. This approximation is crude and is nowadays used

as the starting point of iterative calculations of more sophisticated mean-field theories.
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Figure 2.2: A schematic diagram for the self-consistency of the CPA

2.2.2 The Coherent Potential Approximation : its limitations and gener-

alizations

Let us begin from a random secular matrix in which the randomness is in the mass element

only. For example, mR can take the values mA or mB and we replace DRR′ by � DRR′ �.

In the coherent potential approximation, the basic underlying idea is to obtain an effective

secular matrix Seff(z), which is lattice translationally symmetric and the representation

of its Green function Geff (z) = Seff(z)
−1 is a good approximation to the averaged Green

function of the random Hamiltonian. � G(z) �= Geff(z)

VCA secular matrix also satisfies the lattice translation symmetry property, but is not

a very good approximation.

In general such an effective CPA secular matrix Seff (z) is both complex and frequency

dependent and hence not hermitian. We should make sure that the Green function Geff(z)

constructed out of it must satisfy the necessary Herglotz properties. The effective secular

matrix may be written in the form :

Seff (z) =
∑

R

E(z) PR +
∑

R

∑

R′ 6=R

� DRR′ � TRR′

E(z) =� m � z2− � DRR � +Σ(z), the correction to the VCA i.e. Σ(z) is called the

self energy.

The self-energy is found by the following argument : Let us consider a system in which

we replace the secular matrix at every site by the effective secular matrix, but keep the
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exact random diagonal part of the secular matrix at any one site (see Fig. 2.2). We can

calculate the Green function at that site for this single impurity system (average of the

left figure in Fig. 2.2). The average of this Green function over that one site should be

the configuration averaged Green function (right figure in Fig. 2.2) :

� G
(R)
RR(ω2) �(R) = Geff

RR (ω2) = � GRR(ω2) �

This is an implicit equation for the self-energy, which occurs on both sides.

This MCPA (i.e. mass CPA in case of the phonon problem) works well when mass

difference of two components of a binary alloy is small and it becomes inadequate when δ =

|∆M | ω2/|Z Φ| is large (Z = co-ordination number for the concerned lattice ; Φ= average

force constant). It is clear from the above formulation of the CPA, that it can explicitly

deal with the disorder in one site only. It cannot take into account the configuration

fluctuation effects due to two or more sites. Nor can it properly take into account off-

diagonal disorder. We list the following limitations of CPA :

• CPA can not correctly deal with the off-diagonal disorder (i.e. the randomness in

the force constant matrices involving two or more sites).

• Short range ordering effect due to chemical clustering or segregation cannot be taken

into account.

• The effect of random (or statistical) clustering which is particularly important in

impurity bands is totally absent.

• Experimentally, it has been found that the local modes show some fine structures

which are lost in MCPA.

• The MCPA fails to give correct band widths.

These limitations of the CPA point toward a need to generalize the single site CPA.

Throughout the seventies of the last century there have been various suggestions of

ways of generalizing the CPA to take into account the effect of random clustering, off-

diagonal disorder and short range ordering effects for the multi-site scattering. As far
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as off-diagonal disorder is concerned, several authors have proposed schemes for gener-

alizing the CPA and their approaches include geometrically scaled off-diagonal disorder,

linearly scaled off-diagonal disorder and independent diagonal and off-diagonal disorder.

Majority of these approaches suffer from the different kinds of drawbacks : first there is

no reason why the off-diagonal part of the dynamical matrix should scale either as the

geometrical mean or the arithmetic mean of the individual constituents dynamical matrix.

Secondly, in most cases the proposed generalization violates translation symmetry of the

configuration averaged quantities for homogeneous disorder. Finally, and most seriously,

the approximate configuration averaged Green functions violate the essential Herglotz

analytic properties required to produce physically acceptable results.

In all the previous approaches, the dynamical behaviour of the system was described

by a secular matrix (or Hamiltonian, in case of electrons), suitably set up, whereas the

statistical behaviour was imposed, as it were, from outside by allowing the secular matrix

elements to vary randomly according to some prescription. The secular matrix, by itself,

does not describe the full statistical behaviour of the system completely. If we were to

augment the secular matrix to include the information about the statistical distribution

of its random elements, we would possibly have in our hands an easier tool to describe

configuration averages. The Augmented space formalism of Mookerjee 1973 does exactly

this and has proved to be one of the powerful techniques in this area. We shall describe

this method in some detail in the next section.

2.3 The Augmented Space Formalism

2.3.1 The Configuration Space

We shall begin by clarifying the mathematical concept of the configuration space of a

set of random variables. The idea of a space of configurations is quite familiar to those

working with the Ising model, for instance. This model consists of a set of spins {σR}
arranged on a discrete lattice labelled by {R}. Each spins can have two possible states

or configurations : | ↑R〉 and |↓R〉. The collection of all linear combinations of these two

states i.e. {a| ↑R〉 + b|↓R〉} is called the configuration space of {σR}. It is of rank 2 and

is spanned by the states {| ↑R〉 , |↓R〉}. Let us call this space φR.
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The set of N-spins then have 2N possible configurations, each of which can be written

as a sequence of m-up states and (N-m) down-states. The number (N-m) is defined as

the cardinality of the configuration and the sequence {C} of sites {Ri1, Ri2, Ri3, . . .RiNm
}

where the down states sit is called the cardinality sequence of configuration. For example

take a particular configuration of 6-spins {↑1 ↓2 ↑3 ↓4 ↓5 ↓6}. It has a cardinality 4 and

a cardinality sequence {2 4 5 6}. Another configuration {↓1 ↑2 ↑3 ↓4 ↓5 ↓6} also has

cardinality 4 but its cardinality sequence is {1 4 5 6} which is distinct from the previous

one. For a set of N-spins, the configuration space Φ is of rank 2N and can be written as

the direct product of the configuration spaces of individual spins

Φ =
⊗∏

R

φR

For spins having n > 2 numbers of realizations, It is quite straight forward to generalize

these ideas. The configuration of an individual spin can be labelled as |κR〉 where κR =

1, 2, . . . . . . , n. The rank of φR is now n. Also the set of N-spins will have nN possible

configurations.

We can now translate our ideas from spins {σR} to the random occupation variables

{nR} for a tight binding model of a binary alloy. The occupation variables associated

with a site take the values 0 and 1 when the site is occupied by an atom of the A or B

types. We can immediately visualize the configuration space of the Hamiltonian variable.

Whenever a set of random variables {nR} have a binary distribution, their configuration

space is isomorphic to the one for a collection of Ising spins.

We may now set up the secular matrix for the vibrational problem in a substitutional

binary alloy in terms of the occupation variables :

S(ω2) = M ω2 − D0 − D1

with

M =
∑

R

{mAnR +mB(1 − nR)} δµν PR

D0 = −
∑

R

D′
R PR

D1 =
∑

R

D′
R TRR′ (2.2)
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and

D′
R =

∑

R′

{
Dµν

AAnRnR′ +Dµν
AB [nR(1 − nR′) + nR′(1 − nR)] +Dµν

BB(1 − nR)(1 − nR′)
}

Let us assume that these variables {nR} are independently distributed with the proba-

bility density pR{nR} [ for the individual variables]. The total probability density is given

by :

P ({nR}) =
N∏

R=1

pR(nR)

Probability density pR(nR) satisfies the properties

• It is positive definite pR(nR) ≥ 0

• We shall assume that all its moments are finite. This is a reasonable assumption

for almost all physical distributions.
∫∞
−∞ nk

R pR(nR) dnR < ∞ k > 0

The above properties are specific to the imaginary part of a Herglotz function. For

example, the imaginary part of the Green function of a self adjoint operator H (i.e. local

density of states). One should note that : the local density of states is positive definite

and all its moments are finite if H is a bounded operator.

Taking clue from this, Mookerjee 1973 suggested that for a binary distribution a

Hilbert space φR of rank two spanned by a basis | ↑R〉, | ↓R〉 may be introduced such that

pR(nR) corresponds to the imaginary part of the resolvent of a suitably chosen operator

NR in φR.

i.e. pR(nR) = − 1

π
=m

[
〈↑R |(zI − NR)−1| ↑R〉

]
(2.3)

where z → nR + i δ ; δ → 0

Since the resolvent 〈↑R |(zI − NR)−1| ↑R〉 is Herglotz, so it can be expanded in a

convergent continued fractional form,

pi(ni) = − 1

π
=m 1

z − a0 −
b21

z − a1

(2.4)

For a binary distribution pR(nR) = xAδ(nR−1)+xBδ(nR) we have : a0 = xA, a1 = xB

and b1 =
√
xAxB.
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If nR takes k different values, then the configuration space is spanned by k states : |k〉
which are the eigenstates of NR with eigenvalue k. In that case the average state |∅R〉,
which is the equivalent of | ↑R〉 is

∑
k

√
xk|k〉 where xk is the probability of the variable

NR to take the value k. The other members of the countable basis |n〉 may be obtained

recursively from the average state through :

|0〉 = |∅R〉
b1|1〉 = NR |0〉 − a0|0〉
. . . . . . . . . . . .

bn|n〉 = NR |n− 1〉 − an−1|n− 1〉 − bn−1|n− 2〉

In this basis, the operator NR thus has the tridiagonal form,




a0 b1 0 0 0 . . .

b1 a1 b2 0 0 . . .

0 b2 a2 b3 0 . . .

0 0 b3 a3 b4 . . .

. . . . . . . . . . . . . . . . . .




The close relation of the above procedure to the recursion method described in the previous

chapter should be noted. This is not surprising, since the projected density of states and

the probability density are both positive definite and integrable functions. Convergence

of the continued fraction further requires finite moments to all orders in both the cases.

2.3.2 Augmented Space Theorem

We now address the problem of configuration average of physical quantities. The aug-

mented space theorem, proposed by Mookerjee 1973, states that :

“ To each variable nR there is associated a configuration space φR spanned by the

states {|k〉} of realizations of nR and a self adjoint operator NR, such that

pR(nR) = − 1

π
=m 〈∅R|

[
(nR + iδ)I − NR

]−1 |∅R〉

Then the average of any physical property which is a function of the set of random

variables {nR} is
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� A({nR}) �= 〈∅|Ã({NR})|∅〉 (2.5)

where Ã({NR}) is an operator which is the same functional of {NR} as A({nR}) is

of nR. Further, |∅〉 =
∏⊗

R |∅R〉 is the average configuration state in the product space

Φ =
∏⊗

R φR. The product space Φ contains information about all possible configurations

of the disordered system. ”

Let us look at the proof of the theorem for a function of single random variable nR.

The generalization for a function of the set of many random variables is quite straight

forward. Let f(nR) be a function of a random variable nR. Now,

� f(nR) � =
∫ ∞

−∞
f(nR) pR(nR)dnR

= − 1

π
=m

∫ ∞

−∞
f(nR)〈∅R|(nRI − NR)−1|∅R〉dnR

= − 1

π
=m

∑

k

∑

k′

∫ ∞

−∞
f(nR)〈∅R|k〉〈k|(nRI − NR)−1|k′〉〈k′|∅R〉dnR

=
∑

k

〈∅R|k〉f(k)〈k|∅R〉 = 〈∅R|f̃(NR)|∅R〉 (2.6)

Here f̃(NR) is an operator built out of f(nR) by simply replacing the variable nR by the

associated operator NR. The above expression shows that the average is obtained by

taking the matrix element of this operator between the average state |∅R〉.
Since we have applied the theorem to a single variable alone, the power of the above

theorem is not apparent. Let us now generalize the theorem to a function of many

independent random variables {nR}. The joint probability distribution is given by :

P (nR1
, nR2

, . . . nRi
. . .) =

∏

i

pi(nRi
)

The generalization of the above theorem to averages of functions of the set of random

variables is straight forward.

� f({nR}) �= 〈∅|f̃({ÑR})|∅〉

All the operators in the full configuration space Φ will be denoted by tilde variables. The

operator ÑR are built up from the operators NR as :

ÑR = I ⊗ I ⊗ . . .⊗ NR ⊗ I ⊗ . . .
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This is the augmented space theorem.

If we wish to carry out the configuration averaging of the phonon Green function

matrix element given by the following expression :

GRR(ω2, {nR}) = 〈R|
(
M({nR})ω2 − D({nR})

)−1 |R〉

The theorem leads to

� GRR(ω2) �= 〈R⊗ {∅}|
(
M̃({ÑR})ω2 − D̃({ÑR})

)−1 |R⊗ {∅}〉 (2.7)

where M̃({NR}) is an operator having a functional form same as that of M({nR}).
D̃({ÑR}) is also an operator having the same functional form as that of D({nR}). The

operators in the right hand side of Eqn. (2.7) have no randomness and hence can be

evaluated rather easily.

The power of the theorem now becomes apparent. The average is seen to be a par-

ticular matrix element of the Green function of an augmented Secular matrix operator.

This is an operator in the augmented space Ψ = H ⊗ Φ where H is the space spanned

by the tight binding basis and Φ the full configuration space. The result is exact. Ap-

proximations can now be introduced in the actual calculation of this matrix element in a

controlled manner. In particular we shall show that the recursion method described in the

earlier chapter is ideally suited for obtaining matrix elements with greater accuracy. Since

configuration averaging is an intrinsically difficult problem, we must pay the price for the

above simplifications. This comes in the shape of the enormous rank of the augmented

space. For sometime it was thought that recursion on the full augmented space was not

a feasible proposition. However it can be shown that, if randomness is homogeneous in

the sense that p(nR) is independent of the label R, then the augmented space has a large

number of local point group and lattice translational symmetries. Saha et al 2004 utilized

these symmetry and vastly reduce the rank of the effective space on which the recursion

is carried out. This made augmented space recursion a viable technique and a body of

work has been done based on the method [Mookerjee 2003].



Chapter 3

Behavior of phonon excitations in random binary

alloys

3.1 Introduction

Many aspects of lattice vibrational, magnetic and electronic excitations in disordered

alloys have been intensively studied both theoretically and experimentally over the past

few decades. Of them the, the electronic problem has been covered in most detail in

recent times with the emergence of first principles techniques which have made it possible

for the theories to attain a much higher degree of accuracy and reliability. Among these

excitations, phonons are not only conceptually the simplest, but are also the most readily

accessible to experimental verification. Neutron scattering experiments [Kamitakahara

and Brockhouse, 1974, Tsunoda et al 1979, R. M. Nicklow 1983] have provided detailed

information about lattice vibrations in random alloys. A satisfactory reliable theory is still

lacking. The main reason for this is that, unlike the case of electrons in substitutionally

disordered alloys, where the Hamiltonian can be expressed in a form where the disorder

is diagonal in a real space representation (This is certainly true, for example, in a LMTO

formalism in the absence of local lattice distortions), the disorder in the dynamical matrix

is essentially off-diagonal. To make things more complicated, the diagonal and off-diagonal

0The contents of this chapter has been published in two papers :

1. Aftab Alam and A Mookerjee, Phys. Rev. B 69, 024205(2004)

2. Aftab Alam and A Mookerjee, Proceedings of the DAE solid state physics symposium, Vol. 49,

590-591 (2004)
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disorders in the dynamical matrix are coupled by the force constant sum rule ΦRR =

−∑R′ 6=R ΦRR′ , which ensures that no vibration can be excited in a uniform translation

of the crystal as a whole. This sum rule imposes an environmental disorder on the force

constants. That is, the disorder in the diagonal element of the dynamical matrix depends

upon its near neighbours or its immediate environment. Hence a reliable theory for phonon

excitations will be that which includes all the three kinds of disorders explicitly.

From the late 1960’s there were many attempts to provide an adequate theory of

phonons in random alloys. Let us look at the most successful mean field approxima-

tion : the single-site coherent potential approximation (CPA), introduced first by Taylor

1967. As the name itself suggests, it is a single site approximation and per se cannot deal

adequately with off-diagonal disorder. Several authors have proposed schemes for general-

izing the CPA and their approaches include geometrically scaled off-diagonal disorder [H.

Shiba 1968, Grunewald 1976], linearly scaled off-diagonal disorder [Kaplan and Mostoller

1974] and independent diagonal and off-diagonal disorder [Kaplan and Mostoller 1974,

Kaplan and Gray 1981, Mills and Ratnavararaksha 1978, Kaplan et al 1980]. Most of

these schemes in practice lead to a single site CPA including off-diagonal disorder. These

approaches suffer from two different kinds of drawbacks : first, there is no reason why

the off-diagonal part of the dynamical matrix should scale either as the geometric mean

or the arithmetic mean of the constituents. Secondly, often the extra assumptions lead

to approximate Green functions which violate the essential Herglotz analytic properties

required to produce physically acceptable results.

The augmented space approach suggested by Mookerjee 1973 provided a very inter-

esting starting point for the generation of appropriate approximations. The 2-site CPA

proposed by Yussouff and Mookerjee 1984 for model systems and subsequently general-

ized [Mookerjee and Singh 1985, Mookerjee and Singh 1988] to realistic alloys was one

successful approach. While it retained the Herglotz properties of the approximate Green

functions, the generalization of the 2CPA to larger clusters violated the lattice transla-

tional symmetry of the configurationally averaged Green function for homogeneous dis-

order. This was overcome subsequently by the traveling cluster approximation of Kaplan

and Gray 1981 also based on the augmented space method. Recently Ghosh et al 2002

have proposed a nearest neighbour traveling cluster CPA and have applied it to phonons
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in NiPt and NiPd alloys. In the next section we shall propose a different approxima-

tion procedure. We shall start from the augmented space method and use the recursion

method of Haydock et al 1972 to obtain the configurationally averaged Green functions.

The termination of the continued fraction expansion will constitute the approximation.

This will not only retain the Herglotz analytic properties of the approximate averaged

Green function, but also include the effect at a site of its neighbourhood, the size of which

we can control. We shall incorporate the effect of the very distant environment by the use

of accurate termination schemes proposed e.g. by Haydock 1980, Luchini and Nex 1987

or Beer and Pettifor 1984. Since we shall incorporate the lattice translation symmetry

in the full augmented space (which is characteristic of homogeneous disorder Ghosh et al

1997) within our approach, the drawback of the original cluster-CPAs used by Mookerjee

and Singh 1985 and Mookerjee and Singh 1988 will be overcome. Further, we shall use

the local point group symmetries of the lattice and the configurations on it to drastically

reduce the rank of the Hilbert space on which the recursion takes place (see Dasgupta et

al 1996). This will allow us to accurately account for large environments around a partic-

ular site. One of the strengths of the proposed method which will represent a major step

forward in the theory is the possibility of including random fluctuations in force constants

beyond the nearest neighbours. While in certain representations the Hamiltonian of elec-

tronic systems can be seen to be short-ranged, this is not so for dynamical matrices. The

recursion method in augmented space can include beyond nearest neighbour randomness

in force constants without much computational expense. In our work on NiPt and NiPd

we have extended disorder up to second nearest neighbours to illustrate this. It is not

immediately clear how easy it would be to extend the method proposed by Ghosh et al

1997 to larger sized clusters. We propose the ASR as a computationally fast and accurate

technique which will incorporate configuration fluctuations over a large local environment.

3.2 The augmented space formalism for phonons

The basic problem in the theory of phonons is to solve a secular equation of the form :

(Mω2 − D) u(R, ω) = 0
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where uα(R, ω) is the Fourier transform of uα(R, t), the displacement of an atom from

its equilibrium position R on the lattice, in the direction α at time t. M is the mass

operator, diagonal in real space and D is the dynamical matrix operator whose tight-

binding representation is of the form :

M =
∑

R

mR δαβ PR, (3.1)

D =
∑

R

Φαβ
RR PR +

∑

R

∑

R′ 6=R

Φαβ
RR′ TRR′ (3.2)

along with the sum rule:

Φαβ
RR = −

∑

R′ 6=R

Φαβ
RR′ (3.3)

Here PR is the projection operator |R〉〈R| and TRR′ is the transfer operator |R〉〈R′| in

the Hilbert space H spanned by the tight-binding basis {|R〉}. R,R′ specify the lattice

sites and α,β the Cartesian directions. mR is the mass of an atom occupying the position

R and Φαβ
RR′ is the force constant tensor.

We shall be interested in calculating the displacement-displacement Green function in

the frequency-wavevector space , which in the absence of disorder in the system has the

diagonal element

G(k,k′, ω2) = G(k, ω2)δ(k − k′).

and for the present case

G(k, ω2) = 〈k|
(
Mω2 − D

)−1 |k〉

where |k〉 is a state in the reciprocal space given by :

|k〉 =
1√
N

∑

R

exp(−ik.R)|R〉.

Since the mass matrix M is perfectly diagonal, we can write

G(k, ω2) = 〈k|M−1/2
(
ω2I − M−1/2DM−1/2

)−1
M−1/2|k〉 (3.4)

where

M−1/2 =
∑

R

m
−1/2
R δαβ PR.
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The equation (3.4) looks exactly like the Green function for the electronic case with

M−1/2DM−1/2 playing the role of Hamiltonian H, ω2 in place of energy and M−1/2|k〉 is

the starting state of recursion.

Let us now consider a binary alloy AxBy consisting of two kinds of atoms A and B

of masses mA and mB randomly occupying each lattice sites. We wish to calculate the

configuration-averaged Green function � G(k, ω2) �. We shall use the augmented space

formalism (ASF) to do so. Since the disorder is homogeneous, averaged � G(k, ω2) � is

also diagonal in reciprocal space representation [Ghosh et al 1997]. The first operation

is to represent the random parts of the secular equation in terms of a random set of local

variables {nR} which are 1 if the site R is occupied by an A atom and 0 if it is occupied

by B. The probability densities of these variables may be written as :

p(nR) = x δ(nR − 1) + y δ(nR)

= (−1/π) =m〈↑R| (nRI − NR)−1 |↑R〉 (3.5)

where x and y are the concentrations of the constituents A and B with x+ y = 1. NR is

an operator defined on the configuration space φR of the variable nR. This is of rank 2

and is spanned by the states {|↑R〉, |↓R〉} :

NR = xp↑
R + yp↓

R +
√
xy T↑↓

R

where p↑
R = | ↑R〉〈↑R | is a projection operator on the average state at R and T↑↓

R =

| ↑R〉〈↓R | + | ↓R〉〈↑R | is a transfer or spin flip operator in configuration space.

Let us now carry out the ASF operations in some detail : The mass mR of the atom

sitting at the site R can then be expressed as :

m
−1/2
R = m

−1/2
A nR +m

−1/2
B (1 − nR) = m

−1/2
B + (δm)−1/2 nR

where

(δm)−1/2 = m
−1/2
A −m

−1/2
B .

Therefore

M−1/2 =
∑

R

[
m

−1/2
B + nR (δm)−1/2

]
δαβ PR. (3.6)
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In the augmented space formalism, in order to obtain the configuration average we simply

replace the random variables nR by the corresponding operator NR associated with its

probability density (as in equation 3.5) and take the matrix element of the resulting

operator between the reference states.

Using the form of NR in Eq. (3.6), we get

M̃−1/2 = m
−1/2
1 I ⊗ I +m

−1/2
2

∑

R

p↓
R ⊗ PR + m

−1/2
3

∑

R

T↑↓
R ⊗ PR (3.7)

where
m

−1/2
1 = x m

−1/2
A + y m

−1/2
B

m
−1/2
2 = (y − x) (δm)−1/2

m
−1/2
3 =

√
xy (δm)−1/2.





Similarly the random off-diagonal force constants Φαβ
RR′ between the sites R and R′ can

be written as :

Φαβ
RR′ = Φαβ

AAnRnR′ + Φαβ
BB(1 − nR)(1 − nR′) + Φαβ

AB [ nR(1 − nR′) + nR′(1 − nR) ]

Φαβ
RR′ = Φαβ

BB + (Φαβ
AA + Φαβ

BB − 2Φαβ
AB) nRnR′ + (Φαβ

AB − Φαβ
BB) (nR + nR′).

Let us define the following :

Φαβ
(1) = x Φαβ

AA − y Φαβ
BB + (y − x)Φαβ

AB

Φαβ
(2) = Φαβ

AA + Φαβ
BB − 2Φαβ

AB .

In augmented space the off-diagonal force constant matrix becomes an operator :

Φ̃αβ
off =

∑

RR′

[
� Φαβ

RR′ � I + Φαβ
(1)

{
(y − x) (p↓

R + p↓
R′) +

√
xyT↑↓

R

}
+

Φαβ
(2)

{
(y − x)2 p↓

R p↓
R′ +

√
xy(y − x)

(
p↓

R T↑↓
R′ + p↓

R′ T↑↓
R

)
+ xy T↑↓

R T↑↓
R′

} ]
⊗ TRR′

=
∑

RR′

Ψαβ
RR′ ⊗ TRR′ . (3.8)

The sum rule,

Φαβ
RR = −

∑

R′ 6=R

Φαβ
RR′

gives the diagonal element of the dynamical matrix :

Φ̃αβ
dia = −

∑

R




∑

R′ 6=R

Ψαβ
RR′



⊗ PR. (3.9)
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The total dynamical matrix in the augmented space is :

D̃ = −
∑

R




∑

R′ 6=R

Ψαβ
RR′



⊗ PR +

∑

RR′

Ψαβ
RR′ ⊗ TRR′ . (3.10)

The augmented space theorem [Mookerjee 1973] now states that the configuration aver-

aged Green function � G(k, w2) � may be written as :

� G
(
k, ω2

)
� =

∫
G
(
k, ω2, {nR}

) ∏
p(nR) dnR

= 〈k ⊗ {∅}| G̃(k, ω2, {NR})|k ⊗ {∅}〉
= 〈k ⊗ {∅}| M̃−1/2

(
ω2Ĩ − M̃−1/2D̃M̃−1/2

)−1
M̃−1/2 |k ⊗ {∅}〉

(3.11)

where M̃−1/2 and D̃ are the operators which are constructed out of M−1/2 and D by

replacing all the random variables nR (or nR′) by the corresponding operators NR (or

NR′

) as given by equation (3.7) and (3.10). These are the operators in the augmented

space Ω = H⊗ Φ. The state |k⊗ {∅}〉 is actually an augmented space state which is the

direct product of the Hilbert space basis and the configuration space basis. The average

configuration {∅} refers to a null cardinality sequence i.e. one in which we have | ↑〉 at all

sites.

Using the operator representation for M̃−1/2 we get :

M̃−1/2 |k ⊗ {∅}〉 = m
−1/2
1 ‖ {∅}〉 +m

−1/2
3 ‖ {R}〉 = |1}

where a configuration state is denoted by its cardinality sequence {C}. We have also used

the short hand notation :

‖ {C}〉 ≡ 1√
N

∑

R

exp(−i k ·R) |R ⊗ {C}〉.

The ket |1} is not normalized. A normalized ket |1〉 is given by

|1〉 =
|1}√
{1|1}

=
(
m1

m̂

)−1/2

‖ {∅}〉 +
(
m3

m̂

)−1/2

‖ {R}〉

With the definitions :

� (1/m) �−1 = m̂
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J̃ =
(
m1

m̂

)−1/2

I ⊗ I +
(
m2

m̂

)−1/2∑

R

PR ⊗ p↓
R +

(
m3

m̂

)−1/2 ∑

R

PR ⊗ T↑↓
R

we may rewrite equation (3.11) as :

� G(k, ω2) � = 〈1| (ω′2Ĩ − D̃eff)
−1 |1〉 (3.12)

where, ω′2 = m̂ω2 and D̃eff = J̃ D̃ J̃. This equation is now exactly in the form in

which recursion method may be applied. At this point we note that the above expression

for the averaged � G(k, ω′2) � is exact. The recursion transforms the basis through a

three term recurrence relation as :

|φ1〉 = |1〉 ; |φ0〉 = 0

|φn+1〉 = D̃eff |φn〉 − an|φn〉 − b2n|φn−1〉 (3.13)

The averaged Green’s function can then be written as a continued fraction :

� G(k, ω2) �=
b21

ω′2 − a1 −
b22

ω′2 − a2 −
b23
. . .

ω′2 − aN − Γ(k, ω′2)

where Γ(k, ω′2) is the asymptotic part of the continued fraction, and

an(k) =
〈φn|D̃eff |φn〉

〈φn|φn〉
and

b2n(k) =
〈φn|φn〉

〈φn−1|φn−1〉
; b21 = 1

To implement the above recursion, we require to know the effect of the operator D̃eff

on a general state in augmented reciprocal space [Biswas et al 1995]. Some of the main

operations are shown in Appendix 1.

So far the expression for the averaged Green function is exact. Approximations are

introduced at this stage for its actual numerical evaluation. The mean-field theories

essentially obtain the self-energies because of disorder scattering, self-consistently and

approximately and then calculate the averaged Green function either from the Green
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function without disorder or the virtual crystal Green function. The Coherent potential

approximation (CPA) proposed by Soven 1967, the cluster CPA proposed by Mookerjee

and Singh 1985 and Mookerjee and Singh 1988, the traveling cluster approximation (TCA)

proposed by Mills and Ratnavararaksha 1978 and Kaplan et al 1980 and the itinerant

CPA (ICPA) proposed by Ghosh et al 2002 basically all belong to this category. The

latest work referenced represent the most sophisticated version of the mean-field theories.

We shall propose an approximation that will start from the infinite continued fraction and

approximate its asymptotic part by an analytic termination procedure. The coefficients

an, bn are calculated exactly up to a finite number of steps and the asymptotic part is

then replaced by a terminator : Γ(k, ω′2) ' T (k, ω′2). The terminator ensures that the

approximate Green function has Herglotz analytic properties.

In the absence of disorder in the problem, the Green function for a given mode is of the

form :

G0(k, ω
′2) =

1

ω′2 − ω2
0(k)

The spectral function A0(k, ω
′2) is a delta function of the form δ(ω′2−ω2

0(k)). If we write

Σ(k, ω′2) = a1(k) − ω2
0(k) +

b22(k)

ω′2 − a2(k) − b23(k)
. . .

= a1(k) − ω2
0(k) + σ(k, ω′2) (3.14)

Then,

� G(k, ω′2) � = G0

(
k, ω′2 − Σ(k, ω′2)

)

Obviously from above Σ(k, ω′2) is the disorder induced self-energy. Damped vibrations

occur with reduced frequencies at ω′
0(k) which are the solutions of the implicit equation :

ω′
0
2
(k) − a1(k) − <e σ(k, ω′

0
2
(k)) = 0

and their disorder induced widths are :

W(k, ω′
0
2
(k)) = − 1

π
=m σ(k, ω′

0
2
(k)) (3.15)

The average spectral function � Aλ(k, w
2) � for a mode labelled λ is related to the

averaged Green function in reciprocal space as :

� Aλ(k, ω
′2) �= − 1

π
lim

δ→0+

[
=m

{
� Gλ(k, ω

′2 − iδ) �
}]

(3.16)
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The averaged density of states is given by :

� n(ω′) �=
2ω′

3

∑

λ

∫

BZ

d3k

8π3
� Aλ(k, ω

′2) �

Here λ labels the particular normal mode branch and BZ is the Brillouin zone.

The dispersion curves for different modes are then obtained by numerically calculat-

ing the peak frequencies of the spectral function. This averaged spectral function gives,

in principle, a proper description of the dynamics but it does not involve any weighting

by scattering lengths. The dispersion curves so obtained are nearly the same as those

obtained experimentally from the peak frequencies of the coherent structure factors Scoh.

This is because the coherent structure factors are nothing but the averaged Green func-

tions weighted by the coherent scattering lengths. The intensities and the line shapes

measured from Scoh and the imaginary part of Green function may differ significantly,

but the peak positions will generally differ little.

3.3 Dispersion Relations and disorder induced line-widths

Experimental determination of the phonon dispersion and line-widths are deduced from

the averaged coherent scattering structure factors. The expression for these can be written

as :

� Scoh(k, ω
2) �= − 1

π
=m� b G(q, ω2) b � (3.17)

here, thermal neutrons with wave-vector k gets scattered to final state of wave-vector k′,

q = k–k′+Q with Q being a reciprocal lattice vector. The energy lost by the incoming

neutrons are taken up by the phonons : (h̄2/2Mn)(k2 − k′2) = h̄ ω. f(ω) is the Bose

distribution function and

b =
∑

R

bR δαβ PR

where bR is the scattering length of the nucleus occupying the siteR. This is a random vari-

able taking two values bA or bB depending on which kind of atom sits at the site labelled R.

For comparison with experiment we have to calculate −(1/π) =m � (b G(q, ω) b)αα �,

rather than the spectral function. For ordered materials the two are proportional, but

if the scattering lengths are themselves random then although this has very little effect
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on the dispersion curves, it does affect the line-shapes and line widths. We can easily

implement such an average within the ASF :

� b G(q, ω2) b � = 〈q ⊗ {∅}| b̃
(
M̃ω2 − D̃

)−1
b̃ |q ⊗ {∅}〉

where

b̃ =� b � I ⊗ I + (y − x)(bB − bA)
∑

R

p↓
R ⊗ PR +

√
xy(bB − bA)

∑

R

T↑↓
R ⊗ PR

Carrying out algebra similar to the one for the averaged Green function, we obtain :

� b G
(
q, ω2

)
b � = 〈1b|

(
ω′2

b Ĩ − D̃b
eff

)−1 |1b〉 (3.18)

where,

|1b〉 =
(
X1

X̂

)−1/2

‖ {∅}〉 +
(
X3

X̂

)−1/2

‖ {R}〉

with,

X
−1/2
1 = x m

−1/2
A bA + y m

−1/2
B bB

X
−1/2
2 = (y − x)

(
m

−1/2
A bA − m

−1/2
B bB

)

X
−1/2
3 =

√
xy
(
m

−1/2
A bA − m

−1/2
B bB

)

X̂ = � b2

m
� = x

b2A
mA

+ y
b2B
mB

(3.19)

Also

ω′2
b = X̂ω2 and D̃b

eff = W̃ D̃ W̃

where,

W̃ =
(
m1

X̂

)−1/2

I ⊗ I +
(
m2

X̂

)−1/2∑

R

PR ⊗ p↓
R +

(
m3

X̂

)−1/2 ∑

R

PR ⊗ T↑↓
R (3.20)

The subsequent recursion calculation follows the identical steps as for the averaged spec-

tral functions. We have chosen a second neighbour force constant model, with dynamical

matrices fitted to reproduce the dispersion curves. The disorder induced widths are the

quantities which are more sensitive to the effect of randomness as compared to the fre-

quencies (i.e. dispersion curves ), and as such will be one of the focus of this work. In order

to extract the full width at half maxima ( FWHM ), we have fitted the coherent structure



Chapter 3. Vibrational properties of disordered systems 38

factors to Lorenzians exactly as the experimentalists do to extract the same. The advan-

tage of including the scattering length fluctuation will be clear when we will show the

nature of the line widths for Ni55Pd45 alloy with and without inclusion of the scattering

length fluctuation (i.e. Calculating the widths once by fitting the spectral functions to

Lorenzians and then the structure factors to Lorenzians ). Our aim in this chapter is to

propose the augmented space recursion as a useful technique to study effects of diagonal,

off-diagonal and environmental disorder.

In the following three subsections, we present our calculations on Ni55Pd45, Ni88Cr12

and Ni50Pt50 alloys. The choice is not arbitrary. Mass disorder dominates in NiPd alloys

while force constant disorder is large in NiCr alloys. NiPt alloys have large disorder both

in mass and force constants. Since in the phonon problem we have both kinds of disorder,

it would be interesting to note the interplay between them in this series of alloys. The

concentrations are chosen so that we may compare our results with existing work.

3.4 Ni55Pd45 face-centered cubic binary alloy (Strong Mass Dis-

order)

If we look at Table (4.1), it immediately shows us that for NiPd alloys, Mass disorder is

much larger than the force constant disorder. The mass ration mPd

mNi
is 1.812 whereas the

Pd-force constants are only 15 % larger than those of Ni. We shall choose Ni55Pd45 alloy for

application of our formalism developed in Section (3.2). This particular alloy has already

been studied within the ICPA by Ghosh et al 2002, CCPA by Mookerjee and Singh

1988 and experimentally by inelastic neutron scattering [Kamitakahara and Brockhouse,

1974]. In the numerical calculation, we have used 500 ω-points. The dispersion relation

is calculated for 25 k-points along each of the three highest symmetry directions.

In Fig. 3.1 we display the coherent scattering structure factors obtained from our

recursion calculation along the highest symmetry directions ( [ζ00], [ζζ0], [ζζζ] ), ζ =

|~k|/|~kmax| for different branches. For a particular direction and branch the different curves

indicates the spectral functions for various ζ points starting from the lowest value ( i.e.

ζ = 0 ) to the edge of the Brillouin zone ( i.e. ζ = 1 in units of 2π/a ). The first

thing to note is that the structure factors are (in contrast to Lorentzian shape) often
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Ni Pd Pt Cr

Atomic number 28 46 78 24

Atomic mass (amu) 58.71 106.4 195.09 51.996

Free atom valence config. 3d84s2 4d10 5d96s1 3d54s1

Lattice constant (fcc) 3.524 3.8904 3.924 3.68(fcc)

2.89(bcc)

Elastic constants at

296oK (1012dyne/cm)

C11 2.461 2.270 3.467 3.5

C12 1.501 1.759 2.507 0.678

C44 1.220 0.717 0.765 1.010

n-n force constants

(in units of dyne/cm)

1XX 17319 19337 26358 37483

1XY 19100 22423 30317 17453

1ZZ -436 -2832 -7040 -13229

n-n-n force constants

(in units of dyne/cm)

2XX 1044 1424 4926 -

2YY -780 210 -537 -

Table 3.1: General properties of fcc Ni, Pd, Pt and Cr. The force constants for Ni, Pd

and Pt are taken from Dutton et al 1972 and that for Cr is taken from Mookerjee and

Singh 1988

asymmetric near the resonances. The asymmetries can be described as a tendency of

more scattering to occur near the resonance frequencies. In other words the shape of a

mode with a frequency slightly lower or higher than that of a resonance tends to have a

second peak or wide tail over the resonance region. In fact if one looks at the [ζζ0] L or

T1 ( doubly degenerate ) and [ζζζ] L or T1 or T2 (3-fold degenerate) branches, the shape

of a doubly peaked structure factor is much more clear. Out of these two peaks, one peak

corresponds to the dispersion curve for the longitudinal mode (L) and the other peak

to the transverse mode (T). Experimentally, for some neutron groups corresponding to

transverse phonons with frequencies just below the lower resonance, definite asymmetry

to the right was observed. Such asymmetries are clearly observed for the [ζ00]T and
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[ζζ0]T1 branches. It is important to note that the structure factors have a pronounced k

and branch dependence.

In Fig. 3.2 we display the dispersion curves, which were constructed by numerically

determining the peaks in the coherent scattering structure factor. In this chapter our main

focus is the development of the augmented space recursion method. Accurate determina-

tion of the force constants shall be left for the future. Ghosh et al 2002 have attempted

much more detailed determination of the force constants. For the time being we have

used the same parametrization of the force constants as they did. These dispersion curves

( solid lines ) are compared with the experimental results Kamitakahara and Brockhouse,

1974 ( filled circles ). The dotted lines span the calculated FWHM’s. The procedure of

calculating FWHM’s has already been discussed. The asymmetry in the widths is again

clearly observed in the two transverse branches quoted above. The results are in good

agreement with the experiment for all the three symmetry directions and for each branch.

Agreement can be achieved by varying only one parameter in the force constant matrix.

This suggests that the force constant disorder is weak and the system is dominated by the

mass disorder, as is clear from the numerical values of the parameters given in Table 4.1

. If one looks at the previous results for the dispersion curves ( i.e. VCA, CPA and ICPA

curves ) Ghosh et al 2002, it will be clear that in the low wave vector regime, there is no

distinction between these results and ours, Because the self averaging of both mass and

force constants over a single wavelength reduces the CPA, ICPA and the ASR results to

become close to the VCA. However as we move toward high wave vectors, the VCA curve

deviates from the experimentally observed one and lies lower in frequency as compared

to the ICPA and the ASR results. The reason is that VCA uses an averaged mass. In

contrast to this, for those theories which capture the effect of mass fluctuation (as do the

ICPA and the ASR), the lighter atoms (Ni in this case) dominate in the high wave vector

region and push the frequencies up. That is why our results agree very well across the

Brillouin zone.

The FWHM’s are much more sensitive to approximations as compared to the frequen-

cies. These are shown in figure (3.3). The FWHM’s shown in the left are those which

have been calculated without including any scattering length fluctuation, while in the

right are those where the fluctuation has been included. The circles along with the error
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Figure 3.1: Total coherent structure factors in different directions with different branches

for Ni55Pd45 . In each of the different directions and branches, the various curves indicate

the total structure factors for various ζ values starting from the lowest value to the edge

of the Brillouin zone. In [ζ 0 0] direction T1 and T2 modes are degenerate, in [ζ ζ 0]

direction L and T1 modes are degenerate and in [ζ ζ ζ] direction all the three modes

are degenerate. The y-axis is in an arbitrary scale with heights scaled to the maximum

height. Different curves for different ζ values are shifted along the x-axis in order to

facilitate vision.
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Figure 3.2: Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Ni55Pd45

calculated from recursion (solid line). The force constants used are given in the text. The

filled circles are the experimental data [Kamitakahara and Brockhouse, 1974] . In all the

three panels the thin dotted lines span the FWHM’s .

bars are the experimental data [Kamitakahara and Brockhouse, 1974]. It is obvious that

the nature of the line widths are not the same in the two cases, rather the one including

scattering length fluctuation is matching more closely with the experimental data than

the one without including the fluctuation. That should be obvious because the experimen-

talists do include this fluctuation. Our results show very strong branch and wave-vector

dependent widths and in good agreement with the experimental results of Kamitakahara

and Brockhouse except in the [ζζζ]L mode. The reason for this may be because of the

highly asymmetric line shapes in the [ζζζ]L mode. The single site CPA yields branch

and k independent widths. It cannot capture the essentially off-diagonal disorder of the

problem. The ICPA and the ASR manages to capture this feature. One should note that

the structure factors are often asymmetric in shape and the usual Lorenzian fits carried

out by most people may not be valid.

3.5 Ni88Cr12 binary alloy (Strong Force constant disorder)

We shall choose this alloy as being the nearest to that studied experimentally by Bosi et

al 1978. Determination of the force constant matrices for this alloy becomes difficult,
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Figure 3.3: Full widths at half-maximum for the NiPd alloy as function of frequency for

different directions in k-space and different modes without (left) and with (right) the

inclusion of the scattering length fluctuation. The filled circles along with the error bars

are the experimental data [Kamitakahara and Brockhouse, 1974]

.

because pure Cr is body centered cubic, but alloyed with Ni, up to 30% Cr it forms

face centered cubic alloys. The force constants of pure Cr may be nothing like those of

Cr in this alloy. Until we are able to determine these from a more first-principles type

approach, our determination of the force-constants for this alloy will remain tentative.

We shall consider a hypothetical fcc Cr, whose force constants are related to the elastic

constants of bcc Cr via :

C11 + C12 = 4(fl − ft′ − ft)/a

C11 − C12 = (fl + 5ft′ + ft)/a

C44 = (fl + ft′ + 2ft)/a

The values of C11, C12 and C44 are taken from Leibfried et al (given in Table I). It has

been observed that the spectral functions and the structure factors for Ni88Cr12 has strong

evidence of branch dependent widths as also asymmetry in certain directions. This lends

credence to our belief that force-constant disorder leads to both asymmetry and strong
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Figure 3.4: Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Ni88Cr12

calculated from recursion (solid line). The force constants used are given in the text. The

filled circles are the 2 CPA results of R.P.Singh’s thesis 1982 . In all the three panels the

thin dotted lines span the FWHM’s .

wave-vector and frequency dependence of the line-shapes.

The influence of force constant disorder may be demonstrated more prominently in

the dispersion curves and widths. In Fig. 3.4, we display the dispersion curves along

with the FWHM’s using the force constants of Table 4.1. The procedure has already

been discussed in the previous section. These dispersion curves compare well with the

experimental results [Bosi et al 1978] as well as the 2 CPA results of R.P.Singh’s thesis

1982 (filled circles). The dotted lines span the calculate FWHM’s. It should be noted

that in the low frequency region, the widths are small but start to become significant

as the phonon frequency increases. The widths are comparatively larger in the [ζ00] L,

[ζζζ] L and [ ζζ0] T2 branches for high ζ-values. Looking at the dispersion curves, one

should notice that the behaviour of the natural widths were somehow complemented in

the behaviour of the frequencies. There is little evidence of resonances. This is expected,

since clear cut resonances are characteristics of large mass disorders only.

In Fig. 3.5 we show the FWHM as a function of frequency. It is clear that there is

strong evidence of mode and k-dependence. The FWHMs are very large and asymmetric
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Figure 3.5: Full widths at half-maximum for the NiCr alloy as function of frequency for

different directions in k-space and different modes.

for the longitudinal modes near the band edge frequencies.

It is obvious from the above discussions that the force constant disorder plays a signif-

icant role in Ni88Cr12 ; and a theory capturing only mass disorder effect (e.g. like CPA )

fails to provide various essential features.

3.6 Ni50Pt50 alloy (Strong Mass and Force constant disorder)

Being encouraged by the right trend of theoretical results toward the experimental results

in the Ni55Pd45 and Ni88Cr12 alloys, where either of the two disorders – diagonal and off-

diagonal dominates, we now apply our formulation to NiPt alloys where both disorders

are predominant. The mass ratio mPt/mNi is 3.3 (quite large compared to previous alloys)

and the nearest neighbour force constants of Pt are on an average 55% larger than those

in Ni. Tsunoda et al 1979 have studied this system thoroughly covering a wide range

of concentration (x=0.05, x=0.3, x=0.5) by inelastic neutron scattering. In our case,

we have considered x=0.5 where we expect the disorder induced scattering to have the
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Figure 3.6: Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Ni50Pt50

calculated from recursion . The force constants used are given in the text. The solid lines

are the L-branch in all the three panels, the dashed lines are the T-branch in the left and

right panels. In the [ζ ζ 0] direction the dashed line indicate the T1 branch while the

dot-dashed line indicate the T2 branch. The filled circles are the ICPA results [Ghosh et

al 2002]. In all the three panels the thin dotted lines span the FWHM’s.

strongest effect.

In this case, the spectral functions as well as the structure factors show few extra

features : Even in [ζ 0 0 ]L, [ζ 0 0 ]T and [ζ ζ 0]T2 modes, unlike the previous two

cases both the functions have one usual well defined peak ( observed more clearly in the

middle-regime of the Brillouin zone ) along with a weakly defined peak with no gap in

between. The occurrence of such a weakly defined peak is due to the inclusion of force

constant disorder. Ghosh et al 2002 have argued that it is entirely because of the off-

diagonal disorder in the force constants. We refer the reader to their paper for the detailed

arguments. Here we note that the feature is equally well reproduced in our augmented

space recursive technique as well. why this should be so ? The effect of force constant

disorder can be understood more clearly by looking at the dispersion curves and widths.

In figures (3.6) and (3.7) we display the dispersion curves and widths respectively

obtained in the recursion using the force constants as given in the text. The solid lines

are the L-branch in all the three panels, the dashed lines are the T-branch in the left
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Figure 3.7: Full widths at half-maximum for the NiPt alloy as function of frequency

for different directions in k-space and different modes including the scattering length

fluctuation.

and right panels, In the middle panel the dashed line indicate the T1-branch while the

dot-dashed line indicate the T2-branch. We have used the same parametrization of the

force constants as used by Ghosh et al 2002. These dispersion curves (solid lines) are

compared with that calculated in the ICPA (filled circles) by Ghosh et al 2002. The aim

of this work was to establish the ASR as a computationally fast and accurate method for

phonon calculations for random alloys.

For all the three panels the thin dotted lines indicate the FWHM’s. Unlike the previous

two cases, the dispersion curves in this case have very different characteristic features. The

splitting of the curves in all the three symmetry directions is the main feature. This is due

to strong resonances, a feature of large mass disorder. Also as one can see that near the

resonances (around 4 THz) the FWHM becomes very large. Tsunoda finds this resonance

near 3.8 THz, while the CPA gives a rather lower value of 3 THz. In addition to these

features , It has been observed that around 7 THz, the structure factor has a third small

peak split from the main branch. This evidence of a weak resonance was also speculated

by Mookerjee and Singh 1985. The overall agreement of our dispersion curves with those
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calculated in the ICPA is good .

In sum, the force constant disorder plays a significant role in Ni50Pt50, and a theory

with mass disorder only fails both qualitatively and quantitatively in such cases. On

the other hand, ASR successfully explains the effects of force constant disorder through

its effect on the coherent structure factor, and demonstrates the relative importance of

the contributions of various atomic species to the dispersion curves and disorder induced

line-widths which the CPA can not. The ASR and the Ni50Pt50 alloy system therefore

provide a proper test case for force constant disorder and show that the ASR can form a

basis for understanding the lattice dynamics of other binary alloys.

3.7 Concluding Remarks

We have presented in this chapter the application of the augmented space recursion for a

reciprocal space study of phonon dispersion, disorder induced line-widths and line shapes

for random binary alloys. We have demonstrated how this multiple scattering based

formalism captures the effects of off-diagonal and environmental disorder. The approx-

imation involving termination of continued fraction expansions of the Green function

retains the essential Herglotz analytic properties. We have applied the method to three

classes of alloys : NiPd where mass disorder dominates, and hence the CPA consequently

does a rather good job , NiCr where force constant disorder dominates and NiPt which

demonstrates the prominence of force constant disorder even in a case where the mass

ratio is ' 3.3. Wherever possible we have compared our results with neutron scattering

data as well as the most sophisticated mean field theory recently proposed by Ghosh et

al 2002. Both qualitatively and quantitatively our results agree well with the available

data. We propose the augmented space technique as a computationally efficient method

for the study of phonons in disordered systems. Our approach in this chapter made no

attempt to obtain the force constant themselves from first principles, but rather resorted,

as others did earlier, to fitting them from experimental data on the constituent metals. In

the next chapter, we shall rectify this, and attempt to obtain the dynamical matrix itself

from a more microscopic theory : the so called Density Functional Perturbation theory.



Chapter 4

The Itinerant CPA and Augmented Space Recursion

4.1 Introduction

The last thirty years have seen numerous attempts at setting up a quantitatively accurate

theory of phonons in disordered alloys. One of the earliest successful approximations

was the coherent potential approximation Taylor 1967 (CPA). This approximation was

a considerable improvement on the existing theories and, in examples of homogeneous

disorder, was shown to yield configuration averaged Green functions which maintained

lattice translational symmetry and the herglotz analytical properties essential for physical

interpretation. Despite its success, particularly in the electronic problem, the CPA was

a single-site, mean-field approximation and could deal with only diagonal (or mass, in

the case of phonons) disorder. The phonon problem is specifically difficult because, in

it, diagonal and off-diagonal disorders are impossible to separate. Moreover, the sum

rule satisfied between the diagonal and off-diagonal parts of the force-constants leads to

environmental disorder. In the electron problem too, whenever there was off-diagonal

disorder, as in the case of alloys with large size difference between its constituents leading

to local lattice distortions [Dasgupta et al 1996] or environmental disorder as in the case

of alloys with short-range order [Mookerjee and Prasad 1993, Durga et al 2004], the CPA

was found to be inadequate.

The hunt for adequate extensions of the CPA was quite rigorous during the seventies

0The contents of this chapter has been communicated to Phys. Rev. B :

1. Aftab Alam, Subhradip Ghosh and A Mookerjee, Phys. Rev. B (2006) : cond-mat/0610391
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and eighties [Gonis and Garland 1978, H. Shiba 1968]. Most of these generalizations

were valid for very special types of off-diagonal disorder, which were mostly unphysical,

or violated translational symmetry and herglotz properties. Eventually, three approaches

emerged as the most successful. Two of them were based on the augmented space theorem

of Mookerjee2 1973 : the itinerant coherent-potential approximation (ICPA) of Ghosh et

al 2002 and the augmented space recursion (ASR) of [Saha et al PRB 1994 and Alam and

Mookerjee 2004]. The former was an extension of the ideas of Mills and Ratnavararaksha

1978 and Kaplan et al 1980 and the latter combined the augmented space technique with

the recursion method of Haydock et al 1972. The third was a very different and rather

striking approach developed by Rowlands et al 2005 and Biava et al 2005 (the non-local

CPA or NL-CPA) using the idea of coarse graining in reciprocal space originally proposed

by Jarrel and Krishnamurthy 2001.

More importantly a first principles ab-initio theory of phonons in disordered alloys is

still lacking. Such a theory is needed in order to gain a microscopic understanding of

the interplay of force constants in the complex phenomenon of phonon excitations. We

have collaborated with the group who developed Itinerant coherent-coherent potential

approximation (ICPA) for the study of phonon excitations in disordered alloys.

Our aim in this chapter is twofold : First, we shall discuss the similarities and differ-

ences between the two methods (ICPA and ASR) based on the augmented space theorem.

We shall apply both the techniques to identical models of an alloy system, FePd, and

discuss the comparison between their results. Secondly, we shall estimate the dynamical

matrices from a first-principles approach to the parent ordered alloys and compare the

ICPA and ASR results with experiment. We shall argue that first-principles estimates of

the dynamical matrices on ordered versions do not yield quantitativly accurate results (in

comparison with experiment) for the disordered alloys. We shall propose that we need to

go beyond and estimate the dynamical matrices from a model of embedded atoms in a

fully disordered background.
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4.2 The Itinerant CPA and Augmented space recursion

The augmented space theorem described in chapter (2) is an exact statement. It is a

clever book keeping technique to include the effects of disorder fluctuations in the model

of phonons in our random alloy. However, it is not an algorithm for the approximate

calculations of spectral and other physical properties of phonons in disordered alloys. For

that we have to turn to either mean-field approximations like the CPA and ICPA or

alternatively to the ASR. The coherent potential like mean-field approximations begin

with a partition of the augmented space into a part which is spanned by the reference

or null cardinality state |{∅}〉 which we shall call the average configuration state and

the remaining part Ψ − |{∅}〉〈{∅}| spanned by fluctuation states : {|{C}〉}. With this

partition, any operator can be written in a block representation :

A =

(
A1 A′

A′† A2

)

The partition or downfolding theorem then allows us to invert this operator in the

subspace spanned by the average configurations alone. By the augmented space theorem

this is the configuration average. If we define the operator K as (mω2 − Φ), then using

the above partition :

K1 = (� m � ω2− � Φ �) . The downfolding theorem and augmented space

theorem together give us :

� G(ω2) � = (K1 − K′† FK′)−P1

= (G−1
V CA(ω2) − Σ(ω2))−P1

F = K−P2

2 is the itinerator (4.1)

Σ = K′† F K′ is the self-energy (4.2)

Here A−P1 and A−P2 refer to the inverses of the operator A in the subspaces labelled by

1 and 2. This is exactly the partitioning idea introduced by Srivastava et al 1982. Ghosh

et al 2002 next confined themselves to single fluctuation states of the type |{R}〉and went

ahead to self-consistently evaluate the self-energy in this approximation. Adopting their

notation 〈{R}|A|{R′}〉 = A(R)(R′), they used translational symmetry in augmented space
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[Ghosh et al . 1999] and approximated the self-energy and itinerator F within the single

fluctuation states :

Σ =
∑

RR′

K′†(R)
F(R)(R′) K′(R′) (4.3)

F(R)(R′) = G(R)

[
δRR′ +

∑

R′′

V(R)(R′′) F (R′′)(R′)

]
(4.4)

In going from the equation (7.1) to (7.3) all contributions to the self-energy of configu-

ration states with more than one fluctuations in more than one site have been neglected.

Similarly in going from equation (7.2) to (7.4), matrix elements of the itinerator F between

configuration states with more than one fluctuation present at a time, which corresponds

to coherent scattering from more than one site have been neglected and such states do

not contribute to F and hence to the self-energy Σ within this approximation. The sec-

ond equation is a Dyson equation within the subspace spanned by only single fluctuation

states. Self-consistency is achieved through :

G(R) =
(
G−1

V CA − Σ(R)
)−1

Σ(R) =
∑

R′R′′ 6=R

K′(R′) F(R′)(R′′) K′(R′′)

The above argument shows that unlike the usual CPA where only a single fluctuation at a

site is considered, multiple fluctuations coming from multiple-scattering is present in the

itinerator F and therefore contribute to the self-energy Σ. However, the approximation

described above means that correlated fluctuations between more than one site are present

in neither the itinerator nor the self-energy. This is the main approximation involved in

the ICPA.

We note that the ICPA is a self-consistent mean-field approximation for the self-energy

which relates the configuration averaged Green function to the virtual crystal one. It is

an approximation which maintains both the translational symmetry of the configuration

average and its herglotz analytic properties. The ASR is an alternative technique for

doing the same thing, namely obtaining an approximation to the self-energy maintaining

the necessaryproperties of the exact case.

The recursion method addresses inversions of infinite matrices [Haydock 1980]. The

average Green function in the augmented space formalism can be written as [Alam and
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Mookerjee 2004] :

� G �= {1|(ω′2Î − D̃eff )
−1|1}

Here

ω′2 = m̂ ω2

D̃eff =
(
M̃−1/2 m̂1/2

)
D̃
(
M̃−1/2 m̂1/2

)

|1} =
(
m

−1/2
1 m̂1/2

)
|{∅}〉 +

(
m

−1/2
3 m̂1/2

)
|{R}〉.

Where m̂ =� m−1 �−1, m
−1/2
1 =� m−1/2 � and m

−1/2
3 =

√
xy((m

−1/2
A −m−1/2

B ). M̃−1/2

and D̃ are given by Eqns. (3.7) and (3.10) of chapter (3).

Once a sparse representation of an operator in a Hilbert space, D̃eff , is known in a

countable basis, the recursion method obtains an alternative basis in which the operator

becomes tridiagonal. This basis and the representations of the operator in it are found

recursively through a three-term recurrence relation :

|un+1} = D̃eff |un} − αn(k)|un} − β2
n(k)|un−1}. (4.5)

with the initial choice |u1} = |k ⊗ {1}〉 or and β2
1 = 1.The recursion coefficients αn and

βn are real and are obtained by imposing the ortho-normalizability condition of the new

basis set as :

αn(k) =
{un|D̃eff |un}

{un|un}
; β2

n+1(k) =
{un|D̃eff |un+1}

{un|un}
and also {um|un} = 0 for m 6= n, n± 1

Now, we use the augmented space theorem and repeated applications of the downfolding

theorem on the tri-diagonal representation gives :

� G(k, ω′2) � =
1

ω′2 − α1(k) − β2
2(k)

ω′2 − α2(k) − β2
3(k)
. . .

ω′2 − αN (k) − Γ(k, ω′2)

=
1

ω′2 − α1(k) − Σ′(k, ω′2)
(4.6)
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From the definition of the self-energy given earlier, it has been argued by us in an ear-

lier communication that the disorder scattering induced lifetimes come entirely from the

imaginary part of Σ′(k, ω′2). Here Γ(k, ω′2) is the asymptotic part of the continued frac

tion. The approximation involved has to do with the termination of this continued frac-

tion. The method of such approximation has already been discussed in section (1.4) of

chapter (1).

Both the ICPA and the ASR involve approximations of the self-energy. We have

already discussed that in the ICPA, contributions of configurations involving correlated

fluctuations in more than one site to the self-energy are ignored in the present case but it is

capable of incorporating them. If we use the form of D̃eff in the recursion equations (4.5),

it is immediately obvious that in the ASR, contributions of such correlated fluctuation

states to the self-energy are present. We had earlier shown that such contributions occur

first at β2
4 for diagonal disorder and in α2 in case of off-diagonal disorder. Ignoring such

contributions will make all moments greater than or equal to eight to be non-exact for

digonal and three for off-diagonal disorder. The ICPA achieves accuracy through self-

consistency in the subspace of single fluctuations in it’s present version , while the ASR

achieves accuracy by increasing the number of recursions in the full augmented space

and estimating the terminator to mimic the asymptotic part of the continued fraction

as closely as possible. The two are very different algorithms. Both can take care of

off-diagonal disorder and short-ranged order, but in those situations where clustering,

either chemical or statistical, is important, the ASR, which takes into account correlated

scattering from clusters, should be preferable over the single-fluctuation only version of

the ICPA.

4.3 First principles calculations of force constants in alloys

As is clear from the above discussions that the crucial component in both the ASR and

the ICPA is the alloy force constants. Due to the random chemical environment around

each atom in a substitutionally disordered alloy, the force constants corresponding to A-

A, B-B and A-B pairs in a AxB1−x alloy are different and in no way resembles the force

constants in a completely ordered environment. In order to have significant accuracy in
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calculated phonon properties one should, therefore, have accurate information on force

constants corresponding to various pairs of chemical species. The only trustworthy source

of force constant data is the first-principles calculation. To this end, we have employed

first-principles Density functional perturbation theory (DFPT) to obtain force constants.

The details about the DFPT and our approach to use it to extract random alloy force

constants is discussed below.

4.3.1 Density functional perturbation theory

Density functional perturbation theory (DFPT) [Baroni et al . 2001] is a density functional

theory (DFT) based linear response method to obtain the electronic and lattice dynamical

properties in condensed matter systems. The dynamical matrix which provides informa-

tion on lattice dynamics of the system can be obtained from the ground-state electron

charge density and it’s linear response to a distortion of the nuclear geometry. In DFPT,

this linear response is obtained within the framework of DFT. One of the greatest ad-

vantages of DFPT-as compared to other nonperturbative methods for calculating lattice

dynamical properties of crystalline solids (such as the frozen-phonon or molecular dy-

namics spectral analysis methods) -is that within DFPT the responses to perturbations

of different wavelengths are decoupled. This feature allows one to calculate phonon fre-

quencies at arbitrary wavevectors avoiding the use of supercells and with a workload that

is independent of the phonon wavelength.

4.3.2 Random alloy force constants from DFPT

Since there is no first-principles theory for lattice dynamics in random alloys available we

took recourse to calculate force constants for ordered structures which can suitably mimic

the random alloy using DFPT. However, for a proper representation for the random

alloy, one needs to work with a large supercell which prohibits the use of DFPT from

a practical point of view. The other approach would have been to construct a set of

ordered structures having the same composition of the alloy under investigation, run

first-principles calculation on each of them and average the data appropriately. As a

first approximation to this approach, here we have done DFPT calculations on a single
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ordered structure and used the resultant force constants as approximate random alloy force

constants as inputs to the ICPA and the ASR. The alloy chosen is FePd. The reason for

choosing the FePd system is twofold: first, the ICPA and the ASR were applied only for

the NiPt and NiPd alloys where the constituents of the alloys have face-centred cubic

structure in their elemental phases. In case of FePd, although the alloy in the disordered

phase is face centred cubic but Fe is body centred cubic in it’s elemental phase. It was

therefore interesting to test the suitability of both the approximations in case of such a

system where one of the constitutents forming the alloy has a different structure than the

alloy itself in it’s elemental phase. Second, inelastic neutron scattering data was available

for Fe50Pd50 alloy [Mahaddene et al 2004]. It would therefore have been possible to

compare the ICPA and the ASR results with the experimental data directly enabling

the understanding of the nature of interactions between various pairs of species in the

random phase. Since the Fe50Pd50 forms a face centred cubic (fcc) solid solution, we have

chosen the prototype tetragonal L10 structure with c/a ratio equal to unity to be used

for first-principles calculations.

4.3.3 Details of first-principles calculations

We use DFPT within the local-density-approximation (LDA) to compute the force con-

stants for the FePd equiatomic composition single ordered structure mentioned above.

The experimental lattice constant a = 7.24 a.u. is used in the calculations. We em-

ploy a plane-wave pseudopotential implementation of the DFPT with Perdew-Zunger

parametrization of the LDA [Perdew and Zunger 1981] as done in the Quantum-Espresso

package. Ultrasoft pseudopotentials [Vanderbilt 1990] with non-linear core correction

[Louie et al 1982] are used for Fe and Pd. The kinetic energy cut-off is taken to be

35 Ry. The Brillouin-zone integrations are carried out with Methfessel-Paxton smearing

[Methfessel and Paxton 1989] using a 10× 7× 7× k-point mesh, which corresponds to 120

k-points in the irreducible wedge. The value of the smearing parameter is 0.1 Ry. These

parameters are found to yield phonon frequencies converged to within 5 cm−1.

Once adequate convergence is achieved for the electronic structure, the phonon force

constants are obtained using the linear response. Within DFPT, the force constants are
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conveniently computed in reciprocal space on a finite q-point grid and Fourier transforma-

tion is employed to obtain the real-space force constants. The number of unique real-space

force constants and their accuracy depend upon the density of the q-point grids: the closer

the q-points are spaced, the accurate the force constants are. In this work, the dynamical

matrix is computed on a 6× 6× 4 q-point mesh commensurate with the k-point mesh.

4.4 Results and Discussions

In Table 4.1 we report the nearest-neighbor force constants for the artificial ordered struc-

ture A-B obtained from first-principles as described above. Subsequently, we use these

Table 4.1: Real-space nearest neighbor force constants for Fe50Pd50 obtained by DFPT

calculations on the artificial ordered structure. The units are dyn cm−1.

Pair Force constant Direction

Fe-Fe -9458 1xx

Fe-Pd -9458 1xx

Pd-Pd -28974 1xx

Fe-Fe -6005 1xy

Fe-Pd -10755 1xy

Pd-Pd -30372 1xy

Fe-Fe 1800 1zz

Fe-Pd -114 1zz

Pd-Pd 3555 1zz

force constants as inputs to the ICPA and the ASR calculations. Figure (4.1) shows the

corresponding dispersion curves. The results clearly show that the force constants for the

artificial ordered structure are not adequate to describe the lattice dynamics for the disor-

dered Fe50Pd50 system. In both the ICPA and the ASR, the high frequency phonons are

poorly represented for all three symmetry directions. On top of that, the high frequency

branches suffer a split for large q values, a feature not observed in the experiments. All

these features point to the fact that the force constants used in the ICPA and the ASR

calculations completely fail to capture the complexities of the force-constant disorder in
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Figure 4.1: Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Fe50Pd50

alloy. The upper panel correponds to the ASR results however the lower panel to the

ICPA results. The filled circles are the experimental data Mahaddene et al 2004. The

force constants used are given in Table 4.1.

a random environment. This is quite understandable as we have used a crude approxi-

mation for the force constants in random environment. One single ordered structure , in

no way, can mimic the randomness in the environment around a given chemical species.

The fact that the force constants obtained on this artificial structure are responsible for

the disagreement with the experiment is corroborated by the coherent structure factors,

particularly at high q values as demonstrated in Figure (4.2) where coherent structure

factors for certain high q values, obtained by the ICPA, are displayed. The curves clearly

show that the spurious high frequency peak is due to the Pd-Pd pairs and to a smaller
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Figure 4.2: Partial and total structure factors calculated in the ICPA for various ζ-values

along the [ζ, 0, 0] and [ζ, ζ, ζ] directions in Fe50Pd50 alloy. The solid line are the total

contribution, the dotted lines are the Fe-Pd spectra, the long-dashed lines are the Fe-

Fe spectra, and the dot-dashed lines are the Pd-Pd contributions. The type of mode is

labelled along a particular symmetry direction. The force constants used are given in

Table 4.1. The details are given in the text.

extent due to Fe-Pd pairs. As is seen from Table 4.1, the Fe-Fe and Pd-Pd force constants

differ by about 70 %, thereby representing a situation of very strong disorder as is seen

in the case of Ni50Pt50 [Ghosh et al 2002]. The splitting of the high frequency branch is

a manifestation of this strong force-constant disorder, albeit wrong in the present case.

In the pursuit of the correct set of force constants for the system so that the suitability

of the ICPA and the ASR can be properly tested, we then used the force constant data

as reported in the experiment [Mahaddene et al 2004]. However, the force constant data

reported in the experiment was obtained by fitting the frequencies to a Born-Von-Karman

force constant model. Also, the frequencies were obtained from neutron-scattering data

on ordered L10 structure at 860K, very close to the order-disorder transition temperature

950K. The reason behind using the experimental force constants obtained from an ordered
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L10 structure for disordered calculations were twofold: first, the L10 force constants

should be a better approximation for random alloy force constants than the artificial

cubic structure ones because the L10 structure allows structural relaxation and therefore

a variation in the bond distances between different chemical species pairs although in

a restricted way. Nevertheless, this restricted degree of relaxation could be crucial in

capturing the nature of forces between various chemical species as has been seen in case

of NiPt alloys [Ghosh et al 2004]. Second, since the L10 data was taken at 860K and

the disordered fcc data was taken at 1020K, both of them lie very close to the order-

disorder transition temperature. At a first-order order-disorder transformation at finite

temperatures, the ordered phase is only partially ordered and the disordered phase is in

equilibrium with, has short-range order. Examination of the correlation functions has

shown that ordered and disordered states rather show similar atomic arrangement in the

vicinity of the order- disorder transformation. It is therefore expected that in the present

case, the L10 force constants at 860K would not change significantly in the disordered

phase at 1020K. These intuitive arguments are well supported by the dispersion curves

presented in Figure (4.3). Both the ICPA and the ASR results agree reasonably well

with the experimental data. The spurious splitting obtained earlier disappears. This

disappearance can be understood better if we look at the force constants used for this

calculation. Table 4.2 lists the experimental force constants used as inputs for the ICPA

and the ASR calculations. In comparison with DFPT values, the Pd-Pd force constants

are a lot softer and the Fe-Pd force constants harden. The fact that the force constants

and their behavior is indeed the deciding factor is again exemplified by the coherent

structure factors for the selected high q vectors as shown in Figure (4.4). The figures

show that the single high frequency peak is now mostly because of the Fe-Fe and Fe-Pd

contributions, rather than the Pd-Pd contribution. This points to the fact that the Pd-Pd

contribution was overestimated and the Fe-Fe and the Fe-Pd contributions were grossly

underestimated by the DFPT calculations on the artificial cubic structure because of the

lack of relaxation in such structure. This in turn can be understood by looking at the

bond distances between various pairs of species. In the cubic structure, the Fe-Fe, Pd-Pd

and the Fe-Pd distances were same and in the present case was taken to be 5.12 a.u. The

L10 structure at 860 K, on the other hand, had Fe-Fe and Pd-Pd distances to be 5.25
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Figure 4.3: Dispersion Curves ( frequency ν vs. reduced wave vector ζ ) for Fe50Pd50

alloy. The upper panel correponds to the ASR results however thelower panel to the

ICPA results. The filled circles are the experimental data Mahaddene et al 2004. The

error bar in the ASR result basically represents the full widths at half maxima (FWHM)

at various ζ values. The force constants used are given in Table 4.2.

a.u. and the Fe-Pd distances to be 5.08 a.u. Thus, the Pd atoms, in the artificial cubic

structures, were made to vibrate in a smaller volume and because of the smaller distance

between two like atoms, the Pd-Pd force constants became harder.

Figure (4.5) compares the ICPA and the ASR results for the phonon densities of states.

Both the approximations produce identical features. The peaks and the band edges have

quantitative agreement among themselves and with the experimental results [Mahaddene

et al 2004].

Figure (4.6) displays the Full width at half maxima (FWHM) data associated with the

finite lifetimes of phonons due to disordered scattering. The upper three panels show the
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Table 4.2: Real-space nearest neighbor force constants for Fe50Pd50 obtained from ex-

perimental data Mahaddene et al 2004 on L10 structure at 860K. The units are dyn

cm−1.

Pair Force constant Direction

Fe-Fe -5650 1xx

Fe-Pd -14050 1xx

Pd-Pd -19450 1xx

Fe-Fe -9750 1xy

Fe-Pd -16550 1xy

Pd-Pd -22350 1xy

Fe-Fe 4100 1zz

Fe-Pd 2500 1zz

Pd-Pd 2900 1zz

widths as a function of wave vector (ζ) along the three symmetry directions extracted from

the ASR method, however the lower three panels show the ICPA results. The FWHM is

a more sensitive test for the underlying approximation than the dispersion curves. The

ICPA and the ASR have reasonable agreement regarding FWHM’s although quantitative

agreement is not there because of the different nature of the two approximations. Unfor-

tunately, the experimental group didn’t perform a phonon life-time measurement so that

the FWHM’s calculated theoretically could be compared with the experiments.

In Fig. (4.7), we have shown the total coherent structure factors at various ζ values

along the three symmetry directions with various modes of vibrations. The upper box

shows ASR result however the lower ICPA result. In both the cases, the different curves

for different ζ values are shifted along the x-axis in order to facilitate vision. One can easily

notice the difference in the nature of curves arising out of two different methodologies.

In ASR result,we have found three classes of degenerate modes, these are (1) T1 and T2

modes along [ζ00] directions (2) L and T1 modes along [ζζ0] directions and (3) all the

three modes along [ζζζ] directions. However in ICPA case, all the modes along different

directions are non-degenerate. The difference in the two kinds of results are due to the

different structure and way of calculations in the two methodologies. However the ultimate
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Figure 4.4: Same as Fig. 4.2 but with the force constants of Table 4.2. Other details are

given in the text.

dispersion curves and FWHM’s came out from two different methodologies are reasonably

well compareable, which are the actual vibrational quantities to look at in any disordered

alloy.

4.5 CONCLUSIONS

This chapter has continued the development of the Augmented space recursion for study-

ing the vibrational properties of disordered metallic alloys. A brief description of the

method combined with a first-principles calculation (the so called DFPT) of the dynami-

cal matrices has been reported. The power of the approach has been illustrated by explicit

calculations for the Fe50Pd50 system.

In addition, we have shown in this chapter that the two theories ICPA and ASR are

unique and systematic in the sense that they produce almost identical results for a partic-

ular system. Both the theories can explicitly take into account the fluctuations in masses,
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Figure 4.5: Phonon density of states for Fe50Pd50 alloy. The upper and lower panel shows

ICPA and ASR results respectively. The force constants used are that of experiment given

in Table 4.2.

force constants and scattering lengths. We propose the methods as computationally fast

and accurate techniques for the study of lattice dynamics of disordered alloys. A correct

quantitative trend (compareable to the experimental result) of the phonon dispersion and

the phonon density of states has been predicted by both the methodologies when the

experimental force constants has been used in the calculation. Off-course there is a fairly

obvious general comment to be made with regard to the self consistency of the procedure.

This is precisely the reason that a first-principles estimate of the dynamical matrices on

parent ordered alloys do not yield quantitatively accurate results (in comparison with the

experiment) for the disordered alloy. We shall propose that we need to go beyond and

estimate the dynamical matrices from a model of embedded atoms in a fully disordered

back ground.
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Figure 4.7: Total coherent structure factors in different directions with different branches

for Fe50Pd50 alloy. The upper and lower box shows ASR and ICPA results respectively.

In each of the different directions and branches, the various curves indicate the total

structure factors for various ζ values starting from the lowest value to the edge of the

Brillouin zone. For the ASR result, the T1 and T2 modes are degenerate along [ζ00]

direction, L and T1 modes are degenerate along the [ζζ0] direction, however all the three

modes are degenerate along the [ζζζ] directions. In the ICPA result, non of the modes are

degenerate. Such differences are hidden inside the structure of two different calculations.

In both the boxes, the different curves for different ζ values are shifted along the x-axis

in order to facilitate vision.



Chapter 5

Inelastic neutron scattering in random binary alloys

5.1 Introduction

In the last chapter we have set up a methodology for the calculation of configurationally

averaged density of states for phonons in disordered binary alloys and have applied it to

three carefully chosen alloy systems to illustrate the interplay between diagonal and off-

diagonal disorder. All the physical quantities discussed in that chapter like the dispersion

relations and line widths for phonons can be measured directly through coherent inelas-

tic neutron scattering. Information about the phonon density of states can be extracted

from the incoherent inelastic neutron scattering cross sections. Over the past few years,

numerous experimental studies [Tsunoda et al 1979, Svensson et al . 1967, Nicklow

et al . 1968 and others, Kamitakahara and Brockhouse, 1974, R. M. Nicklow 1983] of

the lattice dynamics of disordered systems have been carried out providing insight into

the nature of their elementary excitations. However the theoretical counter part is still

unsatisfactory. The theory of scattering of thermal neutrons with disordered alloys is not

a trivial problem in the sense that it requires two basic inputs : first is the formulation

of the problem and the second it’s actual numerical implementation in realistic situa-

tions. As far as the formulation part is concerned, several authors have attempted the

problem with different approaches. However their actual numerical implementation in

realistic systems still remains sketchy beyond the simple single site mean field theories.

Quite some time ago, Nowak and Dederichs 1982 discussed the separation of the coher-

0The contents of this chapter has been published in the paper : Aftab Alam and A Mookerjee, Phys.

Rev. B 71, 094210 (2005).
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ent and incoherent parts of the total inelastic scattering intensity by using the scattering

diagrammatic technique within the single site coherent potential approximation (CPA).

According to their approach the incoherent part of the total scattering intensity is the

sum of all irreducible diagrams containing only short ranged correlations. The coherent

part on the other hand may be expressed as a product of the usual configuration averaged

Green function and the square of an effective scattering length, which is itself given by

the irreducible diagrams closely related to those for the self energy. It has been known

for some time that the single site CPA cannot adequately deal with intrinsic off-diagonal

disorder of the force constants in the problem of phonon excitations in random alloys.

This was evidenced in the inability of the single site CPA to explain experimental lifetime

data on NiPt [Tsunoda et al 1979]. Nor can it adequately deal with the correlated diag-

onal and off-diagonal disorder induced by the force constant sum rule. Several successful

attempts have been made to go beyond the CPA. These include, among others, approxi-

mations based on the augmented space formalism (Mookerjee 1973) : the traveling cluster

approximation (TCA) [Kaplan and Mostoller 1974, Kaplan and Gray 1981, Mills and

Ratnavararaksha 1978, Kaplan et al 1980], the Cluster-CPA [Srivastava et al 1982,

Mookerjee et al 1983], the itinerant cluster approximation (ICPA) Ghosh et al 2002 and

the augmented space recursion (ASR) Alam and Mookerjee 2004.

In this chapter we shall tackle a two-fold problem : one of formulation and the other

of implementation in real alloy systems. We shall use a scattering diagram technique

also based on the augmented space formalism [Mookerjee 1975, Mookerjee 1976] to sug-

gest how to separate the coherent and incoherent parts of the total inelastic scattering

cross-section for a disordered binary alloy in a way mirroring the ideas of Nowak and

Dederichs, but this will be done without taking any recourse to mean-field like approx-

imations. For implementation in real alloy systems, we shall suggest the ASR for the

evaluation of scattering cross sections. But instead of doing an ordinary recursion, we

shall perform a Block recursion in order to calculate the off diagonal entries of the Green

matrix, since the expressions for the scattering cross sections in our formalism require the

contribution of off-diagonal Green’s function. The approximation introduced within this

formalism will maintain the essential analytic properties of the Green function, deal with

off-diagonal disorder and the sum rule without any further simplifications or assumptions
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and encompass environmental effects over an extended neighbourhood. This is the major

contribution of this particular work.

5.2 The Formulation

In the previous chapter (3), we had derived an expression for the configuration averaged

Green matrix [Eqn. (3.11)] as :

� G
(
R,R′, ω2

)
�= 〈{∅} ⊗R|

(
M̃ ω2 − D̃

)−1 |{∅} ⊗ R′〉. (5.1)

The above expression is in terms of the real space basis, where

M̃ = A(m) I ⊗ I + B(m)
∑

R

p↓
R ⊗ PR + F(m)

∑

R

T↑↓
R ⊗ PR

= � M̃ � + M̃
′
. (5.2)

D̃ = −
∑

R




∑

R′ 6=R

Ψαβ
RR′



⊗ PR +

∑

RR′

Ψαβ
RR′ ⊗ TRR′

= � D̃ � −
∑

R




∑

R′ 6=R

Λαβ
RR′



⊗ PR

∑

RR′

Λαβ
RR′ ⊗ TRR′

= � D̃ � + D̃′ (5.3)

with

ΛRR′ = D
(1)
RR′

(
p↓

R + p↓
R′

)
+ D

(2)
RR′

(
T↑↓

R + T↑↓
R′

)
+ D

(3)
RR′ p↓

R p↓
R′

+D
(4)
RR′

(
p↓

R T↑↓
R′ + T↑↓

R p↓
R′

)
+ D

(5)
RR′ T↑↓

R T↑↓
R′ (5.4)

where

D(1) = (y − x) Φ(1),

D(2) =
√
xy Φ(1),

D(3) = (y − x)2 Φ(2),

D(4) =
√
xy (y − x) Φ(2),

D(5) = xy Φ(2).
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and

Φαβ
(1) = x Φαβ

AA − y Φαβ
BB + (y − x)Φαβ

AB

Φαβ
(2) = Φαβ

AA + Φαβ
BB − 2Φαβ

AB

The virtual crystal (VCA) Green matrix is

g(R,R′, ω2) = 〈{∅} ⊗ R| (� M̃ � ω2− � D̃ �)−1 |{∅} ⊗R′〉

where

� M̃ �=� m� I ⊗ I.

Using Eqs. (5.2) and (5.4), we get

� G(R,R′, ω2) � = 〈{∅} ⊗ R|
(
� M̃ � ω2− � D̃ � +M̃′ω2 − D̃′

)−1 |{∅} ⊗ R′〉

= 〈{∅} ⊗ R|
(
g−1 − D̃1

)−1 |{∅} ⊗R′〉 (5.5)

where we define

D̃1 =
∑

R



−ΥR −

∑

R′ 6=R

ΛRR′



 ⊗ PR +

∑

R

∑

R′ 6=R

ΛRR′ ⊗ TRR′

with

ΥR = B(m) ω2 p↓
R + F(m) w2 T↑↓

R .

Let us discuss in brief the superiority of our approach as compared to the previous theories.

The coherent potential approximation has been one of the most successful approximations

for the calculation of the configuration averaged Green functions for disordered alloys.

However, it is a single site approximation and is unable to deal with the intrinsic off-

diagonal disorder in phonon problems. In the early 70s there had been several attempts

to generalize the single site CPA to the so-called bond CPAs (W Shiba 1971, Brouers

et al . 1973). These bond CPAs have serious drawbacks in the sense that they did not

reproduce the dilute limit accurately. This has been discussed by Elliot et al . 1974.

For example, when a B atom sits on a site in a randomly occupied lattice, all the bonds

that emanate from it are correlated in the sense that they can either be of the type BA

or BB depending upon the occupation of the site at the other end of the bond. These
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Figure 5.1: Bond coherent potential approximations

correlations between bonds emanating from a site are important at all concentrations.

Let us see what a bond CPA does :

The left hand side of Fig. (5.1) shows a lattice whose sites are randomly occupied.

The various bond CPAs fall into two categories :

(1) The first category concentrates on one bond, replaces the randomness of the end-

points by a binary “bond occupation” variable nb. It replaces the rest of the solid

by an average medium obtained self-consistently by requiring that the scattering

from this bond is zero on the average.

(2) The second category again isolates a single bond and considers it to have a trimodal

distribution VAA, VBB or VAB . It also replaces the rest of the solid by an average

medium which is obtained through a similar CPA-like argument.

In both these approaches, the single bond is taken out of all the bonds emanating

from a site. The correlations between this and the other bonds which share a corner with

it gets lost in the approximation. Either of these approaches have the serious drawback

discussed by the review article by Elliot et al . 1974.

Our approach for calculating the configuration averaged Green function is quite dif-

ferent. We start with the exact expression of equation (5.5) and carry out recursion

(Haydock et al 1972) starting from an initial state. Our model may be schematically

shown in figure (5.2). The correlations between bonds ending at a site is explicit. In
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Figure 5.2: Our model, where the correlation between bonds arises because of the common

vertex which is random

addition the correlation between the diagonal element of the dynamical matrix and the

off-diagonal elements is also explicitly taken. As we carry out the recursion step by step,

we include joint fluctuations of the bonds terminating at the central site. The action of

the Hamiltonian on a recursion “state” in augmented k-space is as follows :

(a) Flipping configuration from ↑ to ↓ or vice versa at the central site or one of its

neighbours.

(b) Flipping configurations from ↑ to ↓ or vice versa one at the central site and one at

one of its neighbours.

(c) Translating the configuration pattern by a lattice vector.

We start with a “average” state with ↑ at all sites. As the recursion steps proceed,

configuration fluctuations are generated on various sites. All configurations of the central

site and its neighbours are generated as we carry out the recursion step by step. Conse-

quently, from the way we have set up our random dynamical matrix, all the correlated

configurations of the bonds emanating from the central site are taken into account.
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The asymptotic part of the continued fraction is replaced by an analytic terminator

(either that proposed by Luchini and Nex or Beer and Pettifor). This terminator is

deduced from the initial recursion coefficients. This is the approximation made on the

exact expression of equation (5.5). If we carry on recursion exactly up to 8 steps, 16

moments of the density of states are exactly reproduced and the analytic terminator also

ensures that the asymptotic moments are accurate. This is certainly way beyond the

accuracy of the bond CPAs of the type introduced by Brouers et al . 1973.

5.3 A generalized multiple scattering diagram approach
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Figure 5.3: The scattering vertices for the averaged Green function

In this section we shall start from Eqn. (5.5) and develop a multiple scattering picture

based on this. The idea is very similar to that of Edwards and Langer [Edwards 1958,

Langer 1960] in the context of purely diagonal disorder. We shall first expand Eqn.(5.5)

as follows :

� G(R,R′, w2) �= 〈{∅} ⊗R|
(
g + g D̃1 g + g D̃1 g D̃1 g + . . .

)
|{∅} ⊗ R′〉 (5.6)
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Let us discuss very briefly how one generates the scattering diagrams. The first term in

Equation (5.6) gives :

〈{∅} ⊗ R| g |{∅} ⊗R′〉 = g(R,R′, ω2) (5.7)

The second term yields zero since 〈{∅} ⊗ R|D̃1|{∅} ⊗ R′〉 = 0. The third term gives :

∑

S′S′′

∑

S′′′S′′′′

∑

{C}

∑

{C′}
〈{∅} ⊗ R| g |{∅} ⊗ S ′〉 〈{∅} ⊗ S ′| D̃1 |{C} ⊗ S ′′〉

〈{C} ⊗ S ′′| g |{C ′} ⊗ S ′′′〉 〈{C ′} ⊗ S ′′′| D̃1 |{∅} ⊗ S ′′′′〉 〈{∅} ⊗ S ′′′′| g |{∅} ⊗ R′〉

A little algebra yields the following contribution :

〈{∅} ⊗R|g D̃1 g D̃1 g|{∅} ⊗ R′〉 =
∑

S1S2

g(R, S1, w
2) (Fw2) g(S1, S2, w

2) δ(S1 − S2) (Fw2) g(S2, R
′, w2) +

∑

S1

∑

S3S4

g(R, S1, w
2) (Fw2) g(S1, S3, w

2) δ(S1 − S3) ∆
(2)
S3S4

g(S4, R
′, w2) +

∑

S1

∑

S3S4

g(R, S1, w
2) (Fw2) g(S1, S3, w

2) δ(S1 − S4) ∆
(2)
S3S4

g(S4, R
′, w2) +

∑

S1

∑

S2S4

g(R, S1, w
2) ∆

(2)
S1S2

g(S2, S4, w
2) δ(S1 − S4) (Fw2) g(S4, R

′, w2) +

∑

S1

∑

S2S4

g(R, S1, w
2) ∆

(2)
S1S2

g(S2, S4, w
2) δ(S2 − S4) (Fw2) g(S4, R

′, w2) +

∑

S1S2

∑

S3S4

g(R, S1, w
2) ∆

(2)
S1S2

g(S2, S3, w
2) δ(S1 − S3) ∆

(2)
S3S4

g(S4, R
′, w2) +

∑

S1S2

∑

S3S4

g(R, S1, w
2) ∆

(2)
S1S2

g(S2, S3, w
2)δ(S1 − S4) ∆

(2)
S3S4

g(S4, R
′, w2) +

∑

S1S2

∑

S3S4

g(R, S1, w
2) ∆

(2)
S1S2

g(S2, S3, w
2) δ(S2 − S3) ∆

(2)
S3S4

g(S4, R
′, w2) +

∑

S1S2

∑

S3S4

g(R, S1, w
2) ∆

(2)
S1S2

g(S2, S3, w
2) δ(S2 − S4) ∆

(2)
S3S4

g(S4, R
′, w2) +

∑

S1S2

∑

S3S4

g(R, S1, w
2) ∆

(5)
S1S2

g(S2, S3, w
2) δ(S2 − S4)δ(S1 − S3) ∆

(5)
S3S4

g(S4, R
′, w2) +

∑

S1S2

∑

S3S4

g(R, S1, w
2) ∆

(5)
S1S2

g(S2, S3, w
2) δ(S1 − S4)δ(S2 − S3) ∆

(5)
S3S4

g(S4, R
′, w2) (5.8)
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Figure 5.4: The scattering diagrams for n=2.

Referring to Eqns. (5.7)and (5.8) we shall now build up the scattering diagrams. First we

shall associate scattering vertices with the terms in M̃′ and D̃′. The Fig. (5.3) shows the

seven different type of scattering vertices. The dashed lines are associated with the delta

functions. With each factor g we shall associate a propagator represented by a horizontal

arrow. The connected diagrams to order n are then built up by stringing together (n+1)

propagators connected by n vertices with all dashed fluctuation lines connected in pairs.

The algebraic terms in Eqn. (5.8) are then represented by the diagram shown in Fig. (5.4).

The Edwards-Langer diagrams were originally developed only for diagonal disorder. The

diagrams shown in Fig. (5.4) involve off-diagonal scattering terms and the associated

diagrams are generalized scattering diagrams.

Fig. (5.5) shows all the topologically distinct classes of scattering diagrams for n=3.

Note that it involves terms with contributions from D(1), D(3) and D(4) . These scattering

vertices cannot sit either in the leftmost or in the rightmost positions, because one of the

associated pseudo-fermion Green function line vanishes.

For n=4, there are various classes of diagrams as shown in Fig. (5.6). In this figure,
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Figure 5.5: The topologically distinct scattering diagrams for n=3.

(i) the diagram of the type shown in the left most corner of the first row of (A) indicates

a separable double tent diagram 1. The second tent goes to renormalize the rightmost

phonon Green function from g(x, y) to � G(x, y �. (ii) the diagram of the type shown in

the middle of the first row of (A) indicates a double tent non-separable diagram and (iii)

the diagram of the type shown in the right most corner of the third row of (A) indicates a

non-separable crossed-tent diagram. Of these, the inner tent in the double tent diagram

(ii) goes on to renormalize the interior Green function. As such, the crossed tent diagram

1a separable diagram is one that can be broken into two along a electron line without also breaking a

pseudo-fermion line
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Figure 5.6: The topologically distinct classes of scattering diagrams for n=4.

(iii) is a skeleton diagram of this class. The kinds of diagrams other than these are few

examples of skeleton diagrams in this order involving various types of vertices.

If we club together the contribution of all the skeleton diagrams calling this the self-

energy, and allow all phonon Green functions except the left-most to be renormalized by

the separable and non-separable, non-skeleton diagrams, we get the Dyson equation :

� G � = g + g Σ � G �

For homogeneous disorder we have shown earlier that we have translational symmetry in

the full augmented space [Ghosh et al . 1999]. We can then take Fourier transform of the
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Figure 5.7: Structure of skeleton diagrams for the self-energy

above equation to get :

� G(q,E) � = g(q,E) + g(q,E) Σ(q,E) � G(q,E) �

The diagrams for the self-energy are skeleton diagrams all of which have the structure as

shown in Fig. (5.7).

Let us now examine some specific Edwards-Langer scattering diagrams, in some detail,

in order to understand their physical significance and relation to mean-field approxima-

tions. The first three diagrams on the first row of Fig. (5.8) arise because of purely

diagonal disorder in mass. Of these the first two diagrams describe self-energy corrections

to the VCA propagator because of configurations fluctuations at a single site. These dia-

grams are closely related to the diagrammatic treatment discussed by Leath [Leath 1968].

Referring to that earlier work, we note that these diagrams are explicitly included in the

1CPA. The self-energy arising out of such diagrams is site-diagonal, or k-independent in

reciprocal space. The third diagram is the smallest order diagram of this type which de-
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Figure 5.8: Details of some skeleton diagrams for the self-energy

scribes joint configuration fluctuations of two distinct sites. These type of diagrams take

us beyond the 1CPA. For the 1CPA we ignore these fourth order diagrams, and all higher

order diagrams, to all orders, describing joint configuration fluctuations of more than two

sites. Within this approximation, the first inaccurate moment of the density of states

is of order eight. If we include diagrams to all orders which describe joint configuration

fluctuations of two sites we are lead to the 2CPA. This has been described in detail in the

work of Aiyer et al . 1969 and Nickel and Krummhansl 1971.

The diagrams in the second row of Fig. (5.8) describe self-energy corrections due to

configuration fluctuations at a single site for both diagonal (mass) and off-diagonal (force-

constant) disorders. The first and the third diagrams lead to a diagonal self-energy, while

the second and fourth diagrams lead to an off-diagonal contribution to the self-energy

in real space. For off-diagonal disorder even these second order diagrams can lead to

off-diagonal (real space) or k-dependent (reciprocal space) self-energy. Ignoring these

contributions ( to all orders) will lead to a 1CPA type approximation where even the

fourth moment of the density of states will be inaccurate. This had been noted earlier

for 1CPA in off-diagonal disorder problems. The diagrams in row three of Fig. (5.8) are

very similar contributions from configuration fluctuations at a single site but arising out

of pure off-diagonal disorder.

The diagrams on the last row of Fig. (5.8) describe self-energy contributions coming
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from joint fluctuations of two sites arising out of off-diagonal disorder. All such diagrams

take us beyond the 1CPA and some of them contribute to a self-energy which is off-

diagonal (real space) or k-dependent (reciprocal space).

The formal summing up, to infinite order, of diagrams which involve configuration

fluctuations involving single sites has been discussed by Leath 1968. This leads to the

1CPA and within this approximation the first inaccuracy occurs in the eighth moment

of the averaged density of states. Nickel and Krummhansl 1971 have discussed in detail

how to sum up, to infinite order, diagrams which also include joint configuration fluctu-

ations of two sites. It is clear from this discussion that any generalization of a purely

diagrammatic treatment of joint multi-site configuration fluctuations is a very difficult

task indeed. However, a recursion based calculation of the self-energy, as proposed by us

in our previous chapter (3), includes the contribution of such diagrams. Therefore, we

propose the augmented space recursion as an alternative method for the calculation of

averaged Green functions including effects of joint multi-site configuration fluctuations.

5.4 Coherent and Incoherent Inelastic scattering cross sections

The calculation of inelastic scattering cross-sections has had a long history. For random

alloys mention must be made of the work of Elliot and Taylor 1964 reviewed by Elliott

et. AL. [Elliot et al . 1974]. Our arguments here are based on the ideas proposed by

Nowak and Dederichs for the various kinds of scattering diagrams. It turns out that

the numerical evaluation of these quantities require the entire configuration averaged

Green matrices � G(q, w) � and self energy matrices Σ(q, w) in the reciprocal space

representation.

The formal expression for the inelastic cross-section for the scattering of thermal neu-

trons from an initial state labelled by k to a final state k′ with a change of energy,

E = h̄w =
h̄2

2Mn

(k2 − k′2)

and a change of wave-vector q = k − k′ + Q , where Q is a reciprocal lattice vector is :

d2σ

dΩdE
=

1

2Nh̄

k′

k

∑

R

∑

R′

∑

αβ

qαqβ
(
WR =m Gαβ

RR′(w) WR′

)
n(w) exp {iq · (R −R′)}

(5.9)
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Figure 5.9: The scattering vertices related to the fluctuations in W

here : WR = wR {exp[−(1/2)〈(q · uR)2〉th]} : wR is the scattering length of the nucleus of

the atom sitting at R, its equilibrium position, and uR(t) is its deviation from equilibrium

at the time t. n(w) is the Bose distribution function. For a random alloy, wR, the

Debye-Waller factor, the atomic mass and the force constants are all random variables

and dependent on one another via the random occupation variables {nR}. Carrying out

averaging over nuclear spins as well as over all the random configurations :
[
d2σ

dΩdE

]

av

=
1

2Nh̄

k′

k

∑

R

∑

R′

∑

αβ

qαqβ=m
[
WRG

αβ
RR′(w)WR′

]
av
n(w) exp {iq · (R− R′)}(5.10)

Given homogeneity of disorder, we may rewrite the above configuration-average as :
[
d2σ

dΩdE

]

av

=
1

2h̄

k′

k

∑

αβ

qαqβ =m Gαβ(q, w) n(w) (5.11)

[
WR Gαβ

RR′(w) WR′

]
av

= Gαβ(R− R′, w)

Gαβ(q, w) =
∑

R Gαβ(R,w) exp {iq ·R}
(5.12)

Since WR is a random variable taking two values WA and WB depending on which kind

of atom sits at the site labeled ‘R’, So we can write WR = WA nR + WB (1 − nR).

Augmented space theorem then leads to the W factor being replaced by an operator in

configuration-space as :

W̃ = A(W ) I ⊗ I + B(W )
∑

R

PR ⊗ p↓
R + F(W )

∑

R

PR ⊗ T↑↓
R

= W0 Ĩ ⊗ I + W1

∑

R

PR ⊗ p↓R + W2

∑

R

PR ⊗ T ↑↓
R (5.13)
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Figure 5.10: The scattering diagrams for the inelastic scattering cross-section

Since, like the mass, W is a scalar, mode independent quantity, A(W) = A(W ) δαβ, B(W)

= B(W ) δαβ, F(W) = F (W ) δαβ and W̃ = W̃ δαβ. The scattering vertices arising out of

Eqn. (5.13) are shown in Fig. (5.9). The augmented space theorem then gives :

� WRGRR′WR′ �= 〈R⊗ {∅}|W̃
(
g + gD̃1g + gD̃1g D̃1 g + . . .

)
W̃|R′ ⊗ {∅}〉

(5.14)

Fig. (5.10) shows few of the scattering diagrams produced from Eqn. (5.14) for the

scattering cross-section. We have grouped them into four categories :

1. In the category (i) are reducible diagrams whose end vertices are W0 or the aver-
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aged value � W � δαβ. The central decorations are all the diagrams we have

already seen for the configuration-averaged Green function. The contribution of

these diagrams are therefore :

W0 � G(ω) � W0

2. The second set of diagrams (ii) are also reducible diagrams. Inspection of the

diagrams immediately show us that their contribution may be written as :

W′(ω) � G(ω) � W0 + W0 � G(ω) � W′′(ω)

The contribution of the ’vertex’ W′(ω) and W′′(ω) are closely related to the self-

energy, with the initial and final vertices being different : W2 rather than D2 or

D5. We shall discuss this relationship subsequently.

3. The third set of diagrams (iii) are reducible diagrams with contribution :

W′(ω) � G(ω) � W′′(ω)

The contribution of these three sets of reducible diagrams may be added together

to give :

Weff(ω) � G(ω) � Ŵeff (ω)

where

Weff (ω) = W0 + W′(ω)

and

Ŵeff(ω) = W0 + W′′(ω)

4. The last class of diagrams (iv) are irreducible diagrams. Their contribution is also

related to the self-energy with both the initial and final vertices being W2 rather

than D(2) or D(5). We shall discuss these diagrams in detail subsequently.

Because of the disorder renormalization, the Weff is diagonal neither in real nor mode

space and becomes frequency dependent and complex. The reducible diagrams contributes

to an expression :

Gαβ
red(q, ω) =

∑

µν

W αµ
eff (q, ω) � Gµν(q, ω) � Ŵ νβ

eff (q, ω) (5.15)
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If we now examine the structure of the self-energy diagrams in Fig. (5.7), we note that

the vertex D(2) creates one configuration fluctuation at a site if it is an initial vertex

and annihilates a configuration fluctuation if it is a final vertex. On the other hand, the

D(2) vertex creates two configuration fluctuations at two sites if it is an initial vertex and

annihilates two configuration fluctuations at two sites if it is a final vertex. The diagrams

for both Weff(ω) and the irreducible diagrams in Fig. (5.10) have vertices which create

or annihilate only one configuration fluctuation at both the initial and final vertices. If

we denote the part of the self-energy contributed by the diagrams in the first two lines of

Fig. (5.7) by Σ(w), then it follows that :

Weff(q, ω) = W0 + W2 [∆(q)]−1 Σ(q, ω)

Ŵeff(q, ω) = W0 + Σ(q, ω)[∆(q)]−1 W2 (5.16)

where

∆(q) = F(m) ω2 + D(2)(q) + D(5)(q)

The expression (5.15) is long-ranged in real-space. Following the argument of Nowak

and Dederichs 1982 within the CPA and Mookerjee and Yussouff 1986 in a more general

context of a cluster-CPA, we identify contribution of the reducible part as the coherent

part of the inelastic scattering :

[
d2σ

dΩdE

]coh

av

=
1

2h̄

k′

k

∑

αβ

qαqβ =m
[
Weff(q, ω) � G(q, ω) � Ŵeff(q, ω)

]αβ
n(ω)

(5.17)

If we now look back at the irreducible diagrams in class (iv) of Fig. (5.10), we note

that the diagrams in the top row of (iv) are both short ranged : the leftmost one is

totally diagonal in real-space and the rightmost one has the same range as the dynamical

matrices, which are reasonably short ranged. The bottom diagram is longer ranged.

However, this and all long ranged diagrams in this class involve crossed-tent diagrams. If

we look at the diagrams for the self-energy exactly the same kind of structure is seen. The

only diagrams which can lead to a long-ranged self-energy are the crossed-tent diagrams.

One out of many such diagrams is the right most corner diagram of the third row of Fig.

4.4(A). These diagrams belong to correlated scattering from configuration fluctuations at
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different sites. The contributions of such diagrams are dominated by those which are short-

ranged. Within the single site coherent potential approximation (CPA) such diagrams are

neglected altogether and the self-energy (and therefore the irreducible diagrams for the

cross-section) is diagonal in real-space. Beyond the CPA, dominant contributions arise

from correlated scattering of the smaller clusters and the contribution of the irreducible

diagrams is also short-ranged : being between sites within the smaller clusters. The range

of the self-energy and the irreducible diagrams are therefore as large as the size of the

largest cluster whose correlated scattering is significant. The Locality principle of Heine

[Heine 1980] convinces us that electronic structure is insensitive of far-off environment

and, although the self-energy is not diagonal in real-space (except in the single-site CP

approximation), its range is nevertheless short. This is behind the reasonable success of

the CPA in any cases. Again, following the arguments of Nowak and Dederichs 1982 and

Mookerjee and Yussouff 1986, this contribution can be related to the incoherent part of

the inelastic scattering. The incoherent intensity is given by :

[
d2σ

dΩdE

]incoh

av

=
1

2h̄

k′

k

∑

αβ

qαqβ =m
[
Γ(q, ω)

]αβ
n(ω) (5.18)

where

Γ(q, ω) = W2 [∆(q, ω)]−1 Σ(q, ω) [∆(q, ω)]−1 W2 (5.19)

5.5 RESULTS AND DISCUSSION

In the next two sub-subsections, we explore the relative importance of mass and force con-

stant disorder in the inelastic neutron scattering for two specific random alloys Ni55Pd45

and Ni50Pt50. In the previous two chapters, we have already studied the advantages of

Augmented space recursion (ASR) over the simple CPA for understanding the dispersion

and life time of phonons in random binary alloys. The present work is an extension of

that work from the implementation point of view, since now we need to apply the Block

recursion technique [discussed in section (Godin and Haydock 1988, Godin and Haydock

1992) of chapter 2] to calculate the full green matrix and self energy matrix.
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5.5.1 Ni55Pd45 Alloy

We refer the reader to Table-3.1 of the chapter (3) for some of the basic properties of

face-centered cubic Ni and Pd, which is relevant for our present calculation. The prop-

erties associated with the neutron scattering of Ni and Pd are reasonably favorable. The

incoherent scattering cross section of Ni is fairly high, which was at first thought to be a

potentially serious disadvantage, but in practice, this did not turn out to be much of a

problem. It has been found that the scattered neutron distributions are always dominated

by the coherent scattering even for high frequency mode with large widths. Experimental

investigation shows that significant difference between the coherent scattering lengths of

Ni and Pd (The coherent scattering length for Ni is 1.03 while that of Pd is 0.6 in units of

10−12cm ) produces additional incoherent scattering in Ni55Pd45, but this is much smaller

than the incoherence produced by the Ni-atom itself in the alloy.

In Fig. (5.11), we display the inelastic coherent scattering cross sections [calculated

from Eqn. (5.17)] obtained from our Block recursion calculation along the highest sym-

metry directions ([ζ00], [ζζ0], [ζζζ] , ζ = |~q|/|~qmax|). For a particular direction, different

curves indicate the cross sections at various ζ-points starting from the lowest value (ζ = 0)

to the edge of the Brillouin zone (ζ = 1 in units of 2π/a). The first thing to note is that

the scattering cross sections are often asymmetric near the resonances. This property was

also reflected in the phonon line shapes shown in the chapter (3). However the amount of

asymmetries in the cross section is more than that in the usual Lorenzian shaped phonon

line. That should be obvious because if we see the paper of Nowak and Dederichs 1982,

there they have derived an expression for the coherent scattering cross section in the single

site CPA framework, this expression contains in addition to the usual Lorenzian phonon

line contribution [ obtained from =m� G(q, w) � ], a second term which will have zero

contribution only if the scattering length do not fluctuate ( which is not the case in our

formulation ). They have also argued that this extra term leads to an asymmetry (rather

small contribution) of the phonon line. One can also notice that the nature of asymmetry

in the cross section is not the same as in the line shapes. This is due to the contribution

of off-diagonal elements of the Green’s matrix and self energy matrix in the coherent scat-

tering cross section [ as obvious from expression (5.17) ]. This difference in the nature of

asymmetry is more pronounced in the [ζζ0] and [ζζζ] symmetry directions, because the
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Figure 5.11: The coherent scattering cross section in different directions for Ni55Pd45. In

each of the different directions, the various curves indicate the cross sections for various ζ

values starting from the lowest value to the edge of the Brillouin zone. The y-axis is in an

arbitrary scale with heights scaled to the maximum height. Different curves for different

ζ values are shifted along the x-axis in order to facilitate vision.

Green’s matrix [ and self energy matrix ] comes out to be completely diagonal in the [ζ00]

direction. The occurrence of such a structure of the cross section may also be due to the

calculation in the mixed mode frame work. One should notice from the Block recursion

technique described in section (Godin and Haydock 1988, Godin and Haydock 1992) of

chapter 2 that, unlike the ordinary recursion where one extracts results for specific modes,

the Block recursion requires a mixed mode starting state. For a real-space calculations

on a lattice with Z-nearest neighbours, we start the recursion with :

Φ
(1)
J,αβ = U

(1)
αβ δJ,1 + U

(2)
αβ δJ,Z+1
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while for a reciprocal space calculation we start with :

Φ
(1)
J,αβ = U

(1)
αβ δJ,1 + U

(2)
αβ δJ,2

where

U
(1)
αβ =

A(m−1/2)

[A(m−1)]1/2
δαβ ; U

(2)
αβ =

F (m−1/2)

[A(m−1)]1/2
δαβ

The asymmetries can be described as a tendency of more scattering to occur near the

resonance frequencies. It is important to note that the coherent scattering cross sections

have a pronounced q-dependence in all the three symmetry directions. Because of the

short range properties, the self energy ( and [∆(q)]−1 ) depends only rather weakly on q

and does not show any strong structure as a function of the same. The same applies for

the effective scattering length Weff . Thus the only strong q-dependence in the coherent

cross section arises from the average Green’s matrix � G(q,w) � which is a long range

matrix due to it’s dependence on reducible diagrams.

In Fig. (5.12) we display the incoherent scattering cross sections [ calculated from

Eqn.(5.18) ] along the highest symmetry directions. In a particular direction, the different

curves indicate the cross sections for various ζ-points starting from ζ = 0 to ζ = 1 (in

units of 2π/a). A look at fig. (5.12) immediately shows that the incoherent cross sections

are very weakly dependent on q. It is the ”qαqβ” factor in Eqn. (5.18) which weights up

the cross sections as we go on increasing q-points. These results are in accordance with

the arguments of Nowak and Dederichs 1982 and Mookerjee and Yussouff 1986. They

have also mentioned in their paper that, the weak q-dependence of incoherent scattering

cross section arises because of it’s strong similarities with the self energy diagram which

is itself a short range matrix due to it’s dependence on irreducible diagrams and hence

vary rather weakly with q. Kamitakahara and Brockhouse also found a similar qualitative

features for the coherent and incoherent cross sections in their Inelastic neutron scattering

measurement.

5.5.2 Ni50Pt50 Alloy

This section will be devoted for the application of our formulation to NiPt alloys where

both kinds of disorders are predominant. For a list of general properties of face-centered
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Figure 5.12: The incoherent scattering cross sections in different directions for Ni55Pd45

alloy with ΦNi−Pd = 0.7 ΦNi−Ni . In each of the different directions, the various curves

indicate the cross sections for various ζ values starting from the lowest value to the edge

of the Brillouin zone.

cubic Ni and Pt we refer the reader to the reference by Alam and Mookerjee 2004. Tsun-

oda et al 1979 investigated Ni1−xPtx by inelastic neutron scattering and compare their

observations with the CPA. Here for illustrations, we have considered x=0.5 only because

that makes it a concentrated alloy and the failure of CPA is qualitatively more prominent

at this concentration.

In Fig. (5.13), we display the inelastic coherent scattering cross sections along the

highest symmetry direction. As before, In a particular direction the different curves

indicate the cross sections for various ζ-values. For the sake of simplicity, we have used

the same parametrization of masses and force constants as used in the previous chapter

(3). In Ni50Pt50 alloy, the coherent scattering cross sections show few extra features.
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Figure 5.13: Same as Fig. (5.11) but for Ni50Pt50 alloy

Even in the [ζ00] direction, the cross section becomes well separated double peaks along

with weakly defined peak in between in the region from ζ = 0.68 to the zone boundary.

The occurrence of such a weakly defined peak is due to the inclusion of force constant

disorder explicitly in our formulation. It is also clear from Fig. (5.13) that there exists

no appreciable peak intensity below 3.7 THz for ζ ≥ 0.68 in all the three symmetry

directions. Tsunoda also found the same structure below 3.5 THz for ζ ≥ 0.7. However

CPA predicted the lower frequency peak to exist for all the ζ-values.

For smaller ζ-values, the lower frequency peaks are sharper than the high frequency

ones, but the intensity of former decreases significantly with increasing wave vector how-

ever the latter gets sharper, in all the three symmetry directions. The phonon peaks are

well defined for smaller (ζ ≤ 0.38) and higher ζ-values, but no well defined peaks were

observed for intermediate values of ζ, presumably due to extreme line broadening. This
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Figure 5.14: Same as Fig. (5.13) but for Ni50Pt50 alloy.

kind of qualitative features has also been observed experimentally by Tsunoda et al 1979

for longitudinal branches. This feature is more transparent in the [ζζ0] direction [ Fig.

(5.13)] where the low frequency peak gets broadened and becomes more asymmetric in

the region between ζ = 0.4 to ζ = 0.78.

The incoherent scattering cross sections [given by Eqn. (5.18)] for Ni50Pt50 alloy along

the highest symmetry directions are shown in Fig. (5.14). The weak q-dependence of the

cross section is obvious from the figure. The intensities for various q’s in a particular

direction have nearly an approximate q2 dependence because of the factor ’qαqβ’ in Eqn.

(5.18).

In Fig.(5.15), we compare our results for the incoherent scattering cross section with

those of the CPA and the experiment by Tsunoda et al 1979. Here the left, middle and

right panel displays the augmented space block recursion (ASBR) result, experimental
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Figure 5.15: The incoherent scattering cross section for Ni50Pt50. The left panel, middle

panel and right panel display the block recursion result, experimental curve and the CPA

result respectively.

curve and the CPA result respectively. In the CPA result we can observe a dip at the

frequency corresponding to the phonon band gap observed in the dispersion curves. This

suggests a split band behaviour which clearly separates the Pt-contribution in the low

frequency region from the Ni-contribution in the high frequency region, because the low

frequency region is dominated by the Pt-atom (heavier atom) having much lower incoher-

ent scattering length than Ni [ the incoherent scattering length for Pt is 0.1 while that of

Ni is 4.5 ]. This kind of spurious gap however is not observed in the recursion result, be-

cause the CPA results are based on the mass fluctuations alone, ignoring the off-diagonal

and environmental disorder arising out of the dynamical matrix. On the other hand, by

incorporating the force constant disorder as is done in the block recursion, we get rid

of this spurious gap and obtain rather a good agreement with the experimental results.

The overall qualitative behaviour is similar. In addition the phonon band edges in the

recursion results are very close to the experimental ones. The recursion finds the right

band-edge at ' 7.90THz, Tsunoda finds this band-edge experimentally at ' 7.93THz

while the CPA gives a rather higher value of ' 8.267 THz.
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5.6 Concluding Remarks

We have derived a theoretical formulation for the separation of total intensity of thermal

neutron scattering from disordered alloys into a coherent and an incoherent part. The

use of the augmented space to keep track of the configuration of the system has made the

formalism simple yet powerful. In essence, the splitting is identical to that introduced by

Nowak and Dederichs 1982 within a scattering diagrammatic technique except that it has

been done exactly without taking any recourse to mean-field like approximation. Unlike

the method proposed by Mookerjee and Yussouff 1986, where the diagram technique was

exceedingly difficult to generalize into even a small cluster CPA, the augmented space

block recursion proved to be simpler to apply the formalism on realistic random alloys.

We have applied the method to NiPd and NiPt alloys. In Ni55Pd45, we have demonstrated

that mass disorder plays the prominent role. In addition our coherent scattering cross

section enable us to understand the effect of small contribution of the off-diagonal elements

of Green matrix. The results on Ni50Pt50 alloy however demonstrate the prominence of

force constant disorder even in a case where the mass ratio is ' 3. Our results agree well

both with the coherent and the incoherent scattering experiments, where as the CPA fails

both qualitatively and quantitatively. We propose the technique as a computationally fast

and efficient method for the study of inelastic neutron scattering in disordered systems.



Chapter 6

Thermal transport in disordered binary alloys

6.1 Introduction

Lattic thermal conductivity of substitutionally disordered alloys yields valuable informa-

tion about the interactions of thermal excitations with composition fluctuations on their

crystal lattice. In the past few decades, there has been considerable attention toward the

experimental studies [Farrell and Greig 1969, Garber et al 1963, Bauers et al 1991,

Srivastava et al 1970] of the thermal conductivity of disordered alloys. As far as the

theoretical understanding is concerned, it is not so extensive because the presence of dis-

order results in scattering that not only depends on the impurity concentration but also

crucially on both relative masses and size difference between the constituent atoms. For

large mass or size differences, the effect of disorder can be quite unusual. Because of this,

detailed comparison between theory and experiment on the basis of realistic model has

not been very extensive. Most of the theoretical calculations are mostly based on mass

disorder, whereas in phonon problems essential off-diagonal disorder in the force constants

can not be dealt with single site mean field approximations. Such disorder can not be

ignored in a realistic calculation.

0The contents of this chapter has been published in three papers :

1. Aftab Alam and A Mookerjee, Phys. Rev. B 72, 214207 (2005)

2. Aftab Alam and A Mookerjee, J. Phys.: Condens. Matter 18, 4589-4608 (2006)

3. Aftab Alam and A Mookerjee [Accepted for publication in Int. J. Mod. Phys. B], (cond-

mat/0604373)
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Flicker and Leath 1973 first proposed the calculation of lattice thermal conductivity

within a single-site coherent potential approximation (CPA) using the appropriate Kubo

formula. The single-site CPA is a mean field approximation, capable of dealing with

mass disorder alone and is not adequate for treating intrinsic off-diagonal disorder arising

out of the force constants. This was evidenced in the inability of the single site CPA

to explain experimental life time data on NiPt [Tsunoda et al 1979]. Translationally

invariant, multiple site, multiple scattering theories based on the augmented space for-

malism [Mookerjee 1973] have recently been proposed by Ghosh et al 2002 as well as by

us [Alam and Mookerjee 2004] to describe phonons in a series of random alloy systems :

NiPt, NiPd and NiCr. These formalisms explicitly capture the effects of both the diagonal

and off-diagonal disorder.

When we come to comparison between theory and experiment, there is a different

kind of difficulty. In any experiment, the measured thermal conductivity κ consists of

the sum of an electronic component κe and a lattice component κL and κ = κe + κL.

Assuming the thermal analogue of Matthiessen’s rule to be valid, the electronic thermal

resistivity We = 1/κe is given by the sum of an ideal resistivity and an impurity or

residual term. It is often assumed that the ideal resistivity remains unaltered by alloying

and can be obtained from the measurements on pure metals. The residual resistivity Wr

can be calculated with the help of Widemann-Franz law Wr = ρ0(T )/(L0T ), where L0 is

the Lorenz number and ρ0(T) is determined by measuring the electrical resistivity of the

alloy at several temperatures. The lattice component κL can then be separated out from

the observed conductivity κ. Overall what we would like to convey from these details is

that a direct measurement of the lattice component of the thermal conductivity is not

feasible. There always exists certain assumptions behind the calculation of κe and hence

it is not possible always to obtain reliable estimates for this quantity which consequently

affects the separation of κL from the observed conductivity κ.

In this chapter, we shall first introduce a Kubo-Greenwood type formula which relates

the thermal conductivity to the (heat) current-current correlation function. The ideas

used here are very similar to those proposed by Allen and Feldman 1993 except that

the present formulation is done keeping in mind the application to a substitutionally dis-

ordered crystal, rather than an amorphous system. For disordered alloys, configuration
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averaging over various random atomic arrangements have been carried out using the aug-

mented space formalism (ASF) introduced by the authors [Mookerjee 1973]. The ASF goes

beyond the usual mean-field approaches and takes into account configuration fluctuations

over a large local environment. We shall combine the augmented space representation for

phonons [Alam and Mookerjee 2004] with a scattering diagrammatic technique to get an

effective heat current. This effective current consists in addition to the averaged current

term, also the terms arising out of the disorder scattering corrections. We will show that

these disorder induced corrections to the averaged current terms are directly related ei-

ther to the disorder scattering induced self-energy matrix in the propagator or to vertex

corrections. As far as the vertex corrections are concerned, Leath 1970 had obtained these

corrections within the framework of CPA by using diagram summations. In this chapter

we shall derive the contribution of these corrections in a more generalized context with

the inclusion of diagonal as well as the intrinsic off-diagonal disorder arising out of the

dynamical matrix. Since in earlier chapters (1 and 5), we have already shown that the self

energy matrix and the Green matrix can be calculated for realistic binary alloys within an

augmented space block recursion (ASBR) technique, so the present formulation will form

the basis of a subsequent calculation of lattice thermal conductivity in realistic alloys.

6.2 Lattice Thermal Conductivity : A Kubo Greenwood formu-

lation

The Kubo formula which relates the optical conductivity to a current-current correlation

function is well established. The Hamiltonian contains a term
∑

i ji ·A(r, t) which drives

the electrical current. For thermal conductivity we do not have a similar term in the

Hamiltonian which drives a heat current. The derivation of a Kubo formula in this

situation requires an additional statistical hypothesis [Allen and Feldman 1993], which

states that a system in steady state has a space dependent local temperature T (r) =

[κBβ(r)]−1. The expression for the heat current has been discussed in great detail by

Hardy 1963 and Allen and Feldman 1993. The readers are refereed to these papers for

the details of calculation. The matrix element of the heat current in the basis of the
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eigenfunctions of the Hamiltonian is given by :

Sµ
γγ′(k) =

h̄

2
(ωkγ + ωkγ′) vµ

γγ′(k) (6.1)

where, the phonon group velocity vγγ′(k) is given by

vγγ′ =
i

2
√
ωkγωkγ′

∑

µ

∑

ν

εµγ(k) ενγ′(k)


∑

Rij

Φµν(Rij)√
MiMj


Rij e

ik·Rij

=
1

2
√
ωkγωkγ′

∑

µ

∑

ν

εµγ(k) ∇kD
µν(k) ενγ′(k) (6.2)

here γ, γ′ label the various modes of vibration, ωkγ, ωkγ′ are their frequencies, εµγ(k), ενγ′(k)

are the polarization vectors and Dµν(k) is the Fourier transform of mass scaled dynamical

matrix. We shall consider the case where the temperature gradient is uniform within the

system. The Kubo formula then relates the linear heat current response to the tempera-

ture gradient field

〈Sµ(t)〉 = −
∑

ν

∫ ∞

−∞
dt′ κµν(t− t′) ∇νδT (t)

where

κµν(τ) = Θ(τ)
1

T

∫ β

0
dλ〈Sµ(−ih̄λ), Sν(τ)〉.

Θ(τ) is the Heaviside step function, and

S(−ih̄λ) = eλH S e−λH .

〈 〉 on the right-hand side of the above equation denotes thermal averaging over states

in the absence of the temperature gradient. The above equation can be rewritten in the

form of a Kubo-Greenwood expression

κµν(ω, T ) = κµν
I (ω, T ) + κµν

II (ω, T )

κµν
I (ω, T ) =

π

T

∫
d3k

8π3

∑

γ

∑

γ′ 6=γ

〈nkγ′〉 − 〈nkγ〉
h̄(ωkγ − ωkγ′)

Sµ
γγ′(k)Sν

γ′γ(k) δ(ωkγ − ωkγ′ − ω)

(6.3)

κµν
II (ω, T ) =

1

κBT 2

[{∫
d3k

8π3

∑

γ

〈nkγ〉 Sµ
γγ(k)

}{∫
d3k

8π3

∑

γ

〈nkγ〉 Sν
γγ(k)

}

−κBT
∫
d3k

8π3

∑

γ

∂〈nkγ〉
∂(h̄ωkγ)

Sµ
γγ(k) Sν

γγ(k)

]
δ(ω) (6.4)
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where 〈nkγ〉 = (eβh̄ωkγ − 1)−1 is the equilibrium Bose Einstein distribution function and

T is the absolute temperature.

The first expression is for inter-band transitions, while the second expression is for

intra-band transitions. For an isotropic response, we can rewrite the first expression as

κI(ω, T ) =
π

3T

∑

µ

∫
dω′

∫
d3k

8π3

∑

γ

∑

γ′

Ŝµ
γγ′(k, T )Ŝµ

γ′γ(k, T )δ(ω′ − ωkγ′)δ(ω′ + ω − ωkγ)

where

Ŝµ
γγ′(k, T ) =

√√√√
∣∣∣∣∣
〈nkγ′〉 − 〈nkγ〉
h̄(ωkγ − ωkγ′)

∣∣∣∣∣ S
µ
γγ′(k).

We may rewrite the above equation as

κI(ω, T ) =
1

3πT

∑

µ

∫
dω′

∫ d3k

8π3
Tr
[
Ŝµ(k, T ) =m{G(k, ω′)} Ŝµ(k, T ) =m{G(k, ω′ + ω)}

]
.

The operator G(ω) is the phonon Green operator (Mω2I−Φ)−1. The Trace is invariant

in different representations. For crystalline systems, usually the Bloch basis {|k, γ〉} is

used. For disordered systems, prior to configuration averaging, it is more convenient to

use the basis {|k, α〉}, where k is the reciprocal vector and α represents the coordinate

axes directions. We can transform from the mode basis to the coordinate basis by using

the transformation matrices Υγα(k) = εαγ (k). For example

Ŝµ
αβ(k, T ) = Υ−T

αγ (k) Ŝµ
γγ′(k, T ) Υ−1

γ′β(k).

If we define

κ(z1, z2) =
∫
d3k

8π3
Tr
[
Ŝ G(k, z1) Ŝ G(k, z2)

]
. (6.5)

then the above equation becomes,

κI(ω, T ) =
1

12πT

∑

µ

∫
dω′

[
κµµ(ω′−, ω′+ + ω) + κµµ(ω′+, ω′− + ω)

−κµµ(ω′+, ω′+ + ω) − κµµ(ω′−, ω′− + ω)
]

(6.6)

where

f(ω+) = lim
δ→0

f(ω + iδ), f(ω−) = lim
δ→0

f(ω − iδ).
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We have used the Herglotz analytic property of the Green operator

G(ω + iδ) = <e [G(ω)] − i sgn(δ) =m [G(ω)] .

For disordered materials, we shall be interested in obtaining the configuration averaged re-

sponse functions. This will require the configuration averaging of quantities like κ(z1, z2).

6.3 Effects of disorder scattering correction : A scattering dia-

gram approach

Refer to the previous chapter (5), we had derived an expression for the configuration

averaged green matrix [Eqn. 5.5] as

� G(R,R′, ω2) �= 〈{∅} ⊗ R|
(
g−1 − D̃1

)−1 |{∅} ⊗R′〉 (6.7)

where

g = (� M̃ � ω2− � D̃ �)−1 (6.8)

with

ΥR = B(m) ω2 p↓
R + F(m) ω2 T↑↓

R (6.9)

ΨRR′ = D
(1)
RR′

(
p↓

R + p↓
R′

)
+ D

(2)
RR′

(
T↑↓

R + T↑↓
R′

)
+ D

(3)
RR′ p↓

R p↓
R′ +

D
(4)
RR′

(
p↓

R T↑↓
R′ + T↑↓

R p↓
R′

)
+ D

(5)
RR′ T↑↓

R T↑↓
R′ (6.10)

where

D(1) = (y − x) Φ(1)

D(2) =
√
xy Φ(1)

D(3) = (y − x)2 Φ(2)

D(4) =
√
xy (y − x) Φ(2)

D(5) = xy Φ(2).

Scattering diagrams are obtained by expanding the Eq. (6.7) as an infinite series and

the terms B, F and D(1) to D(5) are represented as scattering vertices (see Fig. 6.1).
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Figure 6.1: The scattering vertices for the averaged Green function

It might be instructive to understand what these scattering vertices represent physically.

If we look at Eq. (6.7), we note that the term D̃1 leads to the creation or annihilation

of configuration fluctuations over and above the virtual crystal description. The vertices

F shown in Fig. (6.1), create and annihilate a configuration fluctuation at a given site

because of mass disorder, while the vertex B counts the number of such fluctuations at

a given site. These are the only type of configuration fluctuations we can have if we had

single site mass disorder alone. The single-site mean-field approximations like the single-

site coherent potential approximation (1CPA) can ideally deal with situations where we

ignore the other vertices in Fig. (6.1).

The vertices D(2) also describe creation and annihilation of configuration fluctuations

at single sites. That is, fluctuations at any one end of the two-site dynamical matrix.

Similarly, the vertices D(1) count the number of configuration fluctuations at any one of

the two ends of the dynamical matrix. These are also single-site configuration fluctuations

but arise due to fluctuations in the two-site dynamical matrix. These may also be treated

with some variant of the 1CPA. For example, there are versions of the 1CPA which assume
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2DAB = DAA + DBB . With such an assumption only the single site configurations

fluctuation vertices are non-zero.

The vertices D(5) describe creation and annihilation of two configuration fluctuations,

one at either end of the two-site dynamical matrix. The vertex D(3) counts the number

of configuration fluctuations at either end of the dynamical matrix. The vertices D(4) are

mixed types which both create or annihilate a configuration fluctuation at one end of the

dynamical matrix and count the number of fluctuations at the other end. These last three

vertices describe configurations fluctuations which are essentially two-site and cannot be

properly described within a single-site mean-field approximation.

The end point of the formulation described in the previous chapter (5) was the deriva-

tion of a Dyson equation :

� G �= g + g Σ � G � .

For homogeneous disorder we have shown earlier that we have translational symmetry in

the full augmented space [Ghosh et al . 1999]. We can then take Fourier transform of the

above equation to get

� G(k, E) �= g(k, E) + g(k, E) Σ(k, E) � G(k, E) � .

The diagrams for the self-energy are skeleton diagrams1 which have the structure as shown

in Fig. (5.7) of the previous chapter (5). Each of the 25 different diagram starts with any

one of F, D(2) or D(5) and the central dark semicircle represents all possible arrangements

of scattering vertices to all orders.

6.3.1 Configuration averaging of lattice thermal conductivity

Let us now go back to Eqn. (6.5) and discuss the configuration averaging of the two-

particle green function of the kind κ(z1, z2). The augmented space theorem immediately

implies that

� κ(z1, z2) � =
∫
d3k

8π3
Tr
{ 〈

{∅}
∣∣∣
[
S̃G̃(k, z1) S̃G̃(k, z2)

] ∣∣∣ {∅}
〉}

(6.11)

1A skeleton diagram is a non-separable diagram all of whose propagators are fully disorder renormal-

ized propagators.
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The first thing to note about Equation. (6.11) is that the right hand side is an average

of the product of four random functions whose fluctuations are correlated. The average

of the product then involves the product of the averages and other contributions which

come from averages taken in pairs, triplets and all four random functions.

In real space the random expression Ŝ for a binary alloy can take the values ŜAA, ŜAB ,

ŜBA or ŜBB with probabilities x2 , xy, yx and y2 respectively. We may rewrite the current

ŜRα,R′β as

ŜRα,R′β = ŜAA
Rα,R′β nR nR′ + ŜAB

Rα,R′β nR (1 − nR′) + ŜBA
Rα,R′β(1 − nR) nR′

+ ŜBB
Rα,R′β (1 − nR)(1 − nR′).

Following the same procedure as for the single particle Green functions we get

S̃ =
∑

Rα

∑

R′α′

[
� Ŝ �Rα,R′α′ I ⊗ TRR′ + S

(1)
Rα,R′α′

(
p↓

R + p↓
R′

)
⊗ TRR′

+ S
(2)
Rα,R′α′

(
T↑↓

R + T↑↓
R′

)
⊗ TRR′ + S

(3)
Rα,R′α′p

↓
R ⊗ p↓

R′ ⊗ TRR′

+ S
(4)
Rα,R′α′

(
p↓

R ⊗ T↑↓
R′ + p↓

R′ ⊗ T↑↓
R

)
⊗ TRR′ + S

(5)
Rα,R′α′T

↑↓
R ⊗ T↑↓

R′ ⊗ TRR′

]

(6.12)

where

S(1) = (y − x) Ŝ(1), S(2) =
√
xy Ŝ(1),

S(3) = (y − x)2 Ŝ(2), S(4) =
√
xy (y − x) Ŝ(2),

S(5) = xy Ŝ(2).

and

Ŝ
(1)
Rα,R′β = x

(
ŜAA

Rα,R′β − ŜAB
Rα,R′β

)
− y

(
ŜBB

Rα,R′β − ŜBA
Rα,R′β

)

Ŝ
(2)
Rα,R′β = ŜAA

Rα,R′β + ŜBB
Rα,R′β − ŜAB

Rα,R′β − ŜBA
Rα,R′β.

We now start to set up the scattering diagrams for the thermal conductivity. A look at

Equation. (6.12) shows us that the first term is the averaged VCA current. This term is

absorbed in the unscattered part of the phonon green function and leads to the zero-th
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Figure 6.2: The scattering vertices associated with the random current terms

order approximation. Equation. (6.12) looks very similar to Equation. (6.10) from the

operator point of view. The only difference is that the former equation arises due to the

disorder in heat currents while the latter equation due to the disorder in the dynamical

matrix. Exactly as before we can associate scattering vertices with the terms in S̃. Fig.

(6.2) shows sixteen different scattering vertices arising out of the equation (6.12). Let us

now discuss how the scattering diagrams are set up and then examine them. The rule for

obtaining the diagrams for the correlation function � κ(z1, z2) � is as follows : Take any

two current diagrams from Fig. (6.2) and two propagators and join them end to end. Now

join the configuration fluctuation lines (shown as dashed arrows) in all possible ways. The

zero-th order approximation for � κ(z1, z2) � can be shown diagrammatically as in Fig.

(6.3). The most dominant contribution comes from this particular diagram. Here the

two current terms are the averaged current, and all configuration fluctuation decorations

renormalize only the two phonon propagators. The bold propagators in this diagram

are fully scattering renormalized propagators corresponding to the configuration averaged

green function. The contribution of this term to the correlation function � κ(z1, z2) �
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is ∫
d3k

8π3
� Ŝ(k) �� G(k, z1) �� Ŝ(k) �� G(k, z2) � . (6.13)

The rest of the terms in Equation. (6.12) give rise to scattering. We shall now focus on

     KEY

<< G >>

<< S >>

Figure 6.3: The VCA or zero-th order approximation for � κ(z1, z2) �.
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Figure 6.4: Few examples of scattering diagrams where no disorder line joins the two

phonon propagators.

the main correction terms to the expression in Equation. (6.13). These are the correction

terms to the averaged current which, as we will show, are closely related to the self-

energies. The first type of scattering diagrams are those in which no disorder propagator

(shown as the dashed lines) joins either two phonon propagators or two of the current lines

directly. Fig. (6.4) shows few such scattering diagrams. These sets of diagrams may be
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Figure 6.5: Scattering diagrams contributing to effective heat current.

clubbed together and renormalized in a form which will consist of two fully renormalized

phonon propagators connected at the two ends by a new form of the renormalized current.

This new form of the renormalized current may be obtained in the following way.

Fig. (6.4) clearly shows that these types of diagrams are made out of a left renormalized

current diagram chosen out of any one of the diagrams from (a,b) in Fig. (6.5) and one

right renormalized current diagram from any one of the diagram (c,d) of Fig. (6.5)

connected by two renormalized propagators. Let us now obtain expressions for the renor-

malized currents. A careful look at the self-energy diagrams (See Fig. (5.7) of the previous
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chapter) shows that all self-energy diagrams have the structure

Σ(k, z) = ∆(k, z) Ω(k, z) ∆(k, z) (6.14)

Where Ω(k, z) is the Fourier transform of

ΩRR′(z) =
∑

R1R2

GRR1
(z) PRR′

R1R2
(z) GR2R′(z) (6.15)

and

∆(k, z) = F z2 + 2 ∆(2)(k) + 2 ∆(5)(k).

In the above equation, the quantity ‘P ’ stands for the central dark semicircle of Fig.

(5.7) of chapter(5) which represents all possible arrangements of scattering vertices to all

orders.

If we compare the diagrams of Fig. 6.5(a) with the diagrams for the self energy Fig.

(5.7), we note that the only difference between the two is that the left most scattering

vertex is replaced by a very similar current term. In the diagrams of Fig. 6.5(a), the

left most diagonal terms similar to the vertex F of Fig. (6.1) is off course missing. The

contribution of such diagrams may be written in a mathematical form as

(
2 S(2)(k) + 2 S(5)(k)

)
Ω(k, z) ∆(k, z)

which may be expressed in terms of the self energy ‘Σ’ by using Equation. (6.14) as

(
2 S(2)(k) + 2 S(5)(k)

) [
∆(k, z1)

]−1
Σ(k, z1).

The contribution of the diagrams in Fig. 6.5(b) is

Σ(k, z2)
[
∆(k, z2)

]−1 (
2 S(2)(k) + 2 S(5)(k)

)
.

Similarly the contribution of the diagrams in Fig. 6.5(c) and Fig. 6.5(d) are respectively

given by

Σ(k, z1)
[
∆(k, z1)

]−1 (
2S(2)(k) + 2S(5)(k)

)
&
(
2S(2)(k) + 2S(5)(k)

) [
∆(k, z2)

]−1
Σ(k, z2)

The next most dominant disorder corrections come from a group of diagrams which de-

scribe joint fluctuation of one current and two propagators. A few such diagrams are

shown in Fig. (6.6).
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Figure 6.6: The scattering diagrams associated with joint fluctuations of one current term

and two propagators.

The contributions of these diagrams [Fig. 6.6(a,b)] can also be expressed in terms of

the self energy as,

(a) Σ(k, z2)
[
∆(k, z2)

]−1
S(5)(k)

[
∆(k, z1)

]−1
Σ(k, z1)

(b) Σ(k, z1)
[
∆(k, z1)

]−1
S(5)(k)

[
∆(k, z2)

]−1
Σ(k, z2).

If we now gather all the contributions from these diagrams [ From Fig. 6.5(a,b,c,d) and

Fig. 6.6(a,b) ], we may define a renormalized current term as follows :

Seff(k, z1, z2) =� Ŝ(k) � +∆S1(k, z1, z2) + ∆S2(k, z1, z2) (6.16)

where

∆S1(k, z1, z2) = 2
(
S(2)(k) + S(5)(k)

) [
∆(k, z1)

]−1
Σ(k, z1) +

Σ(k, z2)
[
∆(k, z2)

]−1
2
(
S(2)(k) + S(5)(k)

)

∆S2(k, z1, z2) = Σ(k, z2)
[
∆(k, z2)

]−1
S(5)(k)

[
∆(k, z1)

]−1
Σ(k, z1).
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Figure 6.7: The scattering diagrams associated with joint fluctuations of two current

terms and one propagator.

The contribution of these disorder-renormalized currents and propagators to the correla-

tion function is

� κ(1)(z1, z2) �=
∫ d3k

8π3
Tr
[
Seff(k, z1, z2) � G(k, z1) � S†

eff(k, z1, z2) � G(k, z2) �
]
.

(6.17)

We shall now discuss the disorder correction terms which involve joint fluctuations between

the two current terms and one propagator. Few such diagrams are shown in Fig. (6.7).

A close inspection of these diagrams shows that these are also related to the self energy

diagrams with vertices at both ends replaced by currents. The corrections due to these

terms can therefore be related to the self-energy as before. The contribution of these

diagrams to the correlation function is given by

� κ(2)(z1, z2) �= 4
∫
d3k

8π3
Tr [∆S3(k, z1) � G(k, z2) � +∆S4(k, z2) � G(k, z1) �] .

(6.18)
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where

∆S3(k, z1) =
(
S(2)(k) + S(5)(k)

) [
∆(k, z1)

]−1
Σ(k, z1)

[
∆(k, z1)

]−1 (
S(2)(k) + S(5)(k)

)†

∆S4(k, z2) =
(
S(2)(k) + S(5)(k)

) [
∆(k, z2)

]−1
Σ(k, z2)

[
∆(k, z2)

]−1 (
S(2)(k) + S(5)(k)

)†
.

In an earlier paper [Saha and Mookerjee 2004] on a similar problem, we have argued

that these are the dominant disorder corrections to the average current. Intuitively we

also expect the same to be true in the present case as well. It is important to note

that these corrections can be obtained from the self-energy and is therefore eminently

computationally feasible in the case of realistic alloys, once we have a feasible method for

obtaining the self-energy.

There are other scattering diagrams which are not related to the self-energy but rather

to the vertex corrections. In these diagrams, a disorder line connects both the phonon

propagators directly. We expect the corrections from these types of diagrams to be less

dominant. For the sake of completeness, we shall indicate in detail how to obtain them

within a ladder diagram approximation in the next section.

6.3.2 The vertex correction

The vertex corrections are basically those scattering diagrams in which disorder lines con-

nect both the propagators directly. We have not yet incorporated these kinds of diagrams

in the disorder renormalization. These types of diagrams arise due to the correlated prop-

agation. The diagrams leading to the vertex corrections may be of different kinds e.g.

ladder diagrams, maximally crossed diagrams etc. The ladder diagrams are those dia-

grams which are built out of repeated vertices shown on the first line of Fig. (6.8). These

kinds of diagrams can be summed up to all orders. This is the disorder scattering version

of the random-phase approximation (RPA) for the phonon-phonon scattering. The maxi-

mally crossed diagrams are those diagrams in which the ladder inserts between the crossed

vertices. These types of diagrams are shown in the second line of Fig. (6.8). In general

we obtain a Bethe-Salpeter equation for the averaged two particle propagator. This is

diagrammatically shown in Fig. (6.9). Here we shall consider the ladder diagrams in de-

tail and show how to obtain the contribution of these diagrams in terms of mathematical
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Figure 6.8: The scattering diagrams leading to vertex correction.

expression. We then sum these ladder diagrams to all orders. The possible scattering

diagrams for the ladder kind of vertex correction involving the vertices B,F,D(1) to D(5)

are as shown in Fig. (6.10). The contribution of seven categories ( A-G ) of the ladder

scattering diagrams in terms of mathematical expression are as given below.

Category A

(
W γδ

αβ

)
A

= (z1z2)
2 FαFγ δαβδγδ + 2 z2

2 D
(2)
αβ F

γ δγδ
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Figure 6.9: The Bethe-Salpeter equation for the thermal conductivity
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Figure 6.10: The ladder scattering diagrams for the vertex correction.

Category B

(
W γδ

αβ

)
B

= (z1
2z2)

2

[∑

ν′ν′′

(Fαν′δαν′) GRν′,Rν′′ (Fν′′βδν′′β)

]
(Bνδδνδ)

+(z1
2Bαβδαβ)(z2

2Bνδδνδ) + 2
[
D

(1)
αβ (z2

2Bνδδνδ)
]
+ 4

[∑

ν′ν′′

D
(2)
αν′GRν′,Rν′′D

(2)
ν′′β

]

×(z2
2Bνδδνδ) + 2

[∑

ν′ν′′

(z1
2Fαν′δαν′)GRν′,Rν′′D

(2)
ν′′β

]
(z2

2Bνδδνδ)

2

[∑

ν′ν′′

D
(2)
αν′ GRν′,Rν′′ (z1

2Fν′′βδν′′β)

]
(z2

2Bνδδνδ) +D
(5)
αβ (z2

2Bνδδνδ).
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Category C

(
W γδ

αβ

)
C

= 2
[
(z1

2Bαβδαβ)D
(1)
νδ

]
+ 2

[∑

ν′ν′′

(z1
2Fαν′δαν′) GRν′,Rν′′ (z1

2Fν′′βδν′′β)

]
D

(1)
νδ

+ 4 D
(1)
αβ D

(1)
νδ + 8

[∑

ν′ν′′

D
(2)
αν′ GRν′,Rν′′ D

(2)
ν′′β

]
D

(1)
νδ + 4

[∑

ν′ν′′

(z1
2Fαν′δαν′)

GRν′,Rν′′ D
(2)
ν′′β

]
D

(1)
νδ + 2

[∑

ν′ν′′

D
(2)
αν′ GRν′,Rν′′ (z1

2Fν′′βδν′′β)

]
D

(1)
νδ

Category D

(
W γδ

αβ

)
D

= 2
[
(z1

2Fαβδαβ)D
(2)
νδ

]
+ 4 D

(2)
αβ D

(2)
νδ

Category E

(
W γδ

αβ

)
E

= 2

[∑

ν′ν′′

(z1
2Bαν′δαν′) GRν′,Rν′′ (z1

2Bν′′βδν′′β)

]
D

(3)
νδ + 8

[∑

ν′ν′′

(z1
2Bαν′δαν′)

GRν′,Rν′′ D
(1)
ν′′β

]
D

(3)
νδ + 16

[∑

ν′ν′′

D
(1)
αν′ GRν′,Rν′′ D

(1)
ν′′β

]
D

(3)
νδ +

+ 4

[ ∑

ν1...ν6

(z1
2Fαν1

δαν1
) GRν1,Rν2

(z1
2Fν2ν3

δν2ν3
) GRν3,Rν4

(z1
2Fν4ν5

δν4ν5
)

GRν5,Rν6
(z1

2Fν6βδν6β)

]
D

(3)
νδ + 16

[ ∑

ν1...ν6

(z1
2Fαν1

δαν1
) GRν1,Rν2

(z1
2Fν2ν3

δν2ν3
) GRν3,Rν4

D(2)
ν4ν5

GRν5,Rν6
D

(2)
ν6β

]
D

(3)
νδ + 4D

(3)
αβ D

(3)
νδ

+4

[∑

ν′ν′′

(z1
2Fαν′δαν′) GRν′,Rν′′ D

(4)
ν′′β

]
D

(3)
νδ + 4

[∑

ν′ν′′

(z1
2Fαν′δαν′)

GRν′,Rν′′ D
(5)
ν′′β

]
D

(3)
νδ + 4

[ ∑

ν1...ν4

(z1
2Bαν1

δαν1
) GRν1,Rν2

(z1
2Fν2ν3

δν2ν3
)

GRν3,Rν4
(z1

2Fν4δδν4δ)

]
D

(3)
νδ + 16

[ ∑

ν1...ν4

(z1
2Bαν1

δαν1
) GRν1,Rν2

(D(2)
ν2ν3

)

GRν3,Rν4
(D

(2)
ν4β)

]
D

(3)
νδ + 8

[ ∑

ν1...ν4

(z1
2Fαν1

δαν1
) GRν1,Rν2

(z1
2Fν2ν3

δν2ν3
)
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GRν3,Rν4
(D

(1)
ν4β)

]
D

(3)
νδ + 4

[ ∑

ν1...ν4

(z1
2Fαν1

δαν1
) GRν1,Rν2

(z1
2Fν2ν3

δν2ν3
)

GRν3,Rν4
(D

(5)
ν4β)

]
D

(3)
νδ + 32

[ ∑

ν1...ν4

(D(1)
αν1

) GRν1,Rν2
(D(2)

ν2ν3
)GRν3,Rν4

(D
(2)
ν4β)

]

D
(3)
νδ + 16

[ ∑

ν1...ν4

(D(2)
αν1

) GRν1,Rν2
(D(2)

ν2ν3
)GRν3,Rν4

(D
(5)
ν4β)

]
D

(3)
νδ

+5

[∑

ν′ν′′

(D
(5)
αν′) GRν′,Rν′′ (D

(5)
ν′′β)

]
D

(3)
νδ + 64

[ ∑

ν1...ν6

(D(2)
αν1

) GRν1,Rν2
(D(2)

ν2ν3
)

GRν3,Rν4
(D(2)

ν4ν5
)GRν5,Rν6

(D
(2)
ν6β)

]
D

(3)
νδ

Category F

(
W γδ

αβ

)
F

= 6

[∑

ν′ν′′

(z1
2Bαν′δαν′) GRν′,Rν′′ (z1

2Fν′′βδν′′β)

]
D

(4)
νδ + 12

[∑

ν′ν′′

(D
(1)
αν′) GRν′,Rν′′

(z1
2Fν′′βδν′′β)

]
D

(4)
νδ + 24

[∑

ν′ν′′

(D
(1)
αν′) GRν′,Rν′′ (D

(2)
ν′′β)

]
D

(4)
νδ

+12

[∑

ν′ν′′

(z1
2Bαν′δαν′) GRν′,Rν′′(D

(2)
ν′′β)

]
D

(4)
νδ + 12 D

(4)
αβ D

(4)
νδ

+10

[∑

ν′ν′′

(D
(5)
αν′) GRν′,Rν′′ (z1

2Fν′′βδν′′β)

]
D

(4)
νδ + 20

[∑

ν′ν′′

(D
(5)
αν′) GRν′,Rν′′

× (D
(2)
ν′′β)

]
D

(4)
νδ + 10

[∑

ν′ν′′

(z1
2Fαν′δαν′) GRν′,Rν′′(D

(5)
ν′′β)

]
D

(4)
νδ

+ 20

[∑

ν′ν′′

(D
(2)
αν′) GRν′,Rν′′(D

(5)
ν′′β)

]
D

(4)
νδ

Category G

(
W γδ

αβ

)
G

= (z1
2Bαβδαβ) D

(5)
νδ + 2D

(1)
αβD

(5)
νδ + 4D

(5)
αβD

(5)
νδ + 4

[∑

ν′ν′′

(z1
2Fαν′δαν′) GRν′,Rν′′

(z1
2Fν′′βδν′′β)

]
D

(5)
νδ + 8

[∑

ν′ν′′

(z1
2Fαν′δαν′) GRν′,Rν′′(D

(2)
ν′′β)

]
D

(5)
νδ

+8

[∑

ν′ν′′

(D
(2)
αν′) GRν′,Rν′′ (z1

2Fν′′β δν′′β)

]
D

(5)
νδ

+16

[∑

ν′ν′′

(D
(2)
αν′) GRν′,Rν′′(D

(2)
ν′′β)

]
D

(5)
νδ
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Therefore, the sum of all possible scattering diagrams contributing to the four legged

vertex ( shown in the extreme right column of Fig. (6.10) ) will be given by

W γδ
αβ =

G∑

i=A

(
W γδ

αβ

)
i

Here we shall sum the ladder diagrams to all orders. The contribution of a single

ladder diagram to the correlation function as shown in the top line of Fig. (6.11) is
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Figure 6.11: The structure of infinite series of ladder diagrams contributing to the corre-

lation function � κ(z1, z2) �.

∑

R1R2

∑

R3R4

∑

R5

∑

α1α2

∑

α3α4

∑

α5α6

Seff
R5α6,R1α1

GR1α1,R2α2
(z1) W

α5α5

α2α2
GR2α2,R3α3

(z1)

(
Seff

R3α3,R4α4

)†
GR4α4,R2α5

(z2) GR2α5,R5α6
(z2) (6.19)

If we apply the homogeneity in full augmented space, it will imply that the above

expression is independent of ‘R’ which allows us to take the Fourier transform leading to
[ ∫

BIZ

d3k

8π3
G(k, z2)S

eff(k, z1, z2)G(k, z1)

]
W
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[ ∫

BIZ

d3k′

8π3
G(k′, z1)

(
Seff(k′, z1, z2)

)†
G(k′, z2)

]
= Γ(z1, z2) W Γ̂(z1, z2)

where we have defined

Γ(z1, z2) =
∫

BIZ

d3k

8π3
G(k, z2)S

eff(k, z1, z2)G(k, z1),

Γ̂(z1, z2) =
∫

BIZ

d3k′

8π3
G(k′, z1)

(
Seff(k′, z1, z2)

)†
G(k′, z2).

Let us now look at the contribution of the infinite series of ladder diagrams ( shown in

the third column of Fig. (6.11) ) to the correlation function. Each one of them has the

same structure as Equation. (6.19), We may then sum up the series as follows :

Let us define

Θγδ
αβ(z1, z2) =

∫

BIZ

d3k

8π3
Gαβ(k, z1) Gγδ(k, z2)

Then

Λ(z1, z2) = W + WΘW + WΘWΘW + . . . = W(z1, z2)
(
I − Θ(z1, z2)W(z1, z2)

)−1
.

Thus the contribution of the infinite series of ladder diagram vertex corrections to the

correlation function may be expressed as

� ∆κ(z1, z2)
ladder � =

∑

αβ

∑

γδ

Γα
β(z1, z2) Λαν

βδ (z1, z2) Γ̂ν
δ (z1, z2)

= Tr
[
Γ(z1, z2) ⊗ Γ̂(z1, z2) � Λ(z1, z2)

]
. (6.20)

Including all kinds of disorder corrections, the configuration average of the two-particle

Green function ( or the correlation function ) now has the form,

� κ(z1, z2) �=� κ(1)(z1, z2) � + � κ(2)(z1, z2) � + � ∆κ(z1, z2)
ladder � . (6.21)

6.4 Configuration averaged thermal diffusivity

The thermal diffusivity Dγ for a harmonic solid is defined as

Dµν
γ (k) = π

∑

γ′ 6=γ

1

ω2
kγ

Sµ
γγ′(k)Sν

γ′γ(k) δ(ωkγ − ωkγ′).
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This is an intrinsic property of the γ-th normal mode and provides an unambiguous

criterion for localization.

The averaged thermal diffusivity (averaged over modes) is then given by

Dµν(ω) =

∫ d3k

8π3

∑

γ

Dµν
γ (k)δ(ω − ωkγ)

∫
d3k

8π3

∑

γ

δ(ω − ωkγ)

=
Dµν

tot(ω)
∫
d3k

8π3

∑

γ

δ(ω − ωkγ)

. (6.22)

Assuming isotropy of the response, we can rewrite the numerator of above equation as

Dµµ
tot(ω) = π

∫
dω′

∫
d3k

8π3

∑

γ

∑

γ′

Ŝµ
γγ′(k)Ŝµ

γ′γ(k)δ(ω′ − ωkγ′)δ(ωkγ − ω′)δ(ω − ωkγ)

where

Ŝµ
γγ′(k) =

1

ωkγ
Sµ

γγ′(k).

We may again rewrite the above equation for Dtot as

Dµµ
tot(ω) =

1

π2

∫
dω′

∫
d3k

8π3
Tr
[
=m{G(k, ω′)}Ŝµ(k)=m{G(k, ω′)}Ŝµ(k)=m{G(k, ω)}

]

The averaged thermal diffusivity can then be expressed as ( for an isotropic response )

D(ω) =
1

3

∑

µ

Dµµ(ω)

=
π

3

∑
µ Dµµ

tot(ω)
∫
d3k

8π3
Tr [=m{G(k, ω)}]

. (6.23)

For disordered material, we shall be interested as before in obtaining the configuration

averaged thermal diffusivity. We have already discussed the configuration averaging of

the two particle Green function using scattering diagram technique in subsection (6.3.1).

It has been found that the net effect is to replace the current terms by an effective heat

current Seff (k, z1, z2). The effective current is a sum of average current and the terms

arising out of the disorder correction. As in the case of optical conductivity calculation
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[Saha and Mookerjee 2004], it will be shown that the overall contribution of disorder

correction terms to the thermal conductivity is small as compared to the average current �
Ŝ(k) �. Keeping in mind this effect of disorder correction terms to the heat current, the

configuration averaged thermal diffusivity can be expressed (to a 1st order approximation)

in the form

� D(ω) �=
π

3

∑
µ � Dµµ

tot(ω) �
∫
d3k

8π3
Tr [=m� G(k, ω) �]

(6.24)

where

� Dµµ
tot(ω) � ' 1

π2

∫
dω′

∫ d3k

8π3
Tr
[
=m� G(k, ω′) �

� Ŝµ(k) =m {G(k, ω′)} Ŝµ(k) =m{G(k, ω)} �
]
.

(6.25)

6.5 Details of Numerical Implementation

Although we have used the scattering diagrammatic technique to analyze the effects of

disorder scattering on the thermal conductivity and obtain relation between the effective

current and self-energy, we shall not use this approach to actually numerically obtain the

thermal conductivity for a real alloy system. If we look at the earlier sections we note

that what we need to obtain are essentially the configuration averaged Green matrices

and the self energy matrices. For this we shall use the augmented space block-recursion

[Alam and Mookerjee1 2005] and also the Brillouin zone integration scheme developed by

us earlier [Saha et al 2005] for disordered alloys. In subsection (Godin and Haydock 1988,

Godin and Haydock 1992) of chapter (1), we have already described the block recursion

technique, which calculates the entire green matrix and the self energy matrix.

The need of efficient techniques for Brillouin zone (BZ) integration in solid state physics

has been widely appreciated in recent years. Such techniques are of great importance

in the numerical calculation of density of state, conductivity, susceptibility, dielectric

function etc. The tetrahedron method allows us a very accurate k-space integration for

both the spectral functions and conductivities for ordered systems. Recently our group has

developed a generalization of this technique for disordered alloys. The spectral functions
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are now no longer delta functions, but Lorenzians with a disorder induced non-zero half-

widths [Saha et al 2005]. We will use the efficient codes developed by our group to carry

out the integrations over the Brillouin zone. We refer the reader to the above referenced

paper for details of the calculation.

6.6 Results and Discussion

The details of numerical calculation for the two alloys of our interest in the present work

are as follows :

• We have carried out calculations on 501 ν-points.

• A small imaginary part of the frequency δ =0.001 has been used for evaluating the

Green matrix and Self-energy matrix in the augmented space block recursion Alam

and Mookerjee1 2005.

• The calculation of lattice conductivity has been done at 40 temperatures.

• For the Brillouin zone integration, 145 k-points in the irreducible 1/48-th of the

zone produced well converged results.

6.6.1 NiPd alloy : Strong mass and weak force constant disorder.

This particular alloy has already been studied experimentally by Farrell and Greig 1969

using conventional potentiometric techniques. But unfortunately their investigation was

limited only to very dilute alloys in the temperature range 2-100 K.

Figure (6.12) shows the results for disordered Ni50Pd50 alloy. The black curve rep-

resents the lattice conductivity including all kinds of disorder induced corrections : e.g.

corrections to the heat current and the vertex corrections, while the red curve stands for

the same quantity but using averaged heat currents and without vertex corrections. The

green curve in this figure shows the scaled joint density of states. From the figure it is

clear that the transition rate ‘τ ’ is strongly dependent both on the initial and the final

energies throughout the phonon frequency (ν). That is

κ(ν, T ) 6= |τ(ν, T )|J(ν), (6.26)
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Figure 6.12: Configuration averaged lattice thermal conductivity vs phonon frequency ν

(THz) for Ni50Pd50 disordered alloy. The red line and black line shows the conductivity

using the average VCA current and effective current (consisting of average VCA current

+ disorder corrections + vertex correction) respectively. The green line in indicates the

configuration averaged joint density of states.

where J(ν) is the joint density of states given by

J(ν) =
∫
dν ′

∫
d3k

8π3
Tr
[
=m� G(k, ν ′) � =m� G(k, ν ′ + ν) �

]
(6.27)

Figure (6.12) shows that the effect of disorder corrections to the current terms on the

overall shape of lattice conductivity is rather small. We should note that the effect of

disorder corrections to current and the vertex corrections in these alloys become negligible

beyond phonon frequencies ' 2.5 THz. For the higher frequency modes the effect of

scattering phenomenon is well described by the mean filed approximation. It is in the

low frequency region that configuration fluctuation effects beyond the mean-field becomes

significant.

There is a very important feature in Fig. (6.12) that still needs discussion : which

is how to explain the origin of a dip in κ(ν) at the lowest energy ν = 0 ? A similar

kind of dip has also been reported by Feldman et al 1993 while studying amorphous
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Si and Si1−xGex alloys. Their κ(ν) have a small Lorenzian shaped dip centered at ν=0.

This reflects the missing intra-band conductivity κII . This dip in κ(ν) stands at a small

but finite value (ν '0). The finiteness of the dip in κ(ν) is because of the fact that their

calculation was based on a Kubo-Greenwood expression for the thermal conductivity with

the delta functions in the expression broadened into a Lorenzian of small (but finite) width

η. However in our case it is evident from the Fig. (6.12) that this dip in κ(ν) stands at

κ(ν) → 0 at ν = 0. This is due to the simple reason that in our calculation the Lorenzian

broadening has not been put in by hand, but it arises automatically from the disorder

effect on the crystalline spectral function =m[G(k, ν)] . Another reason for this difference

in the position of dip in κ(ν) may be due to the fact that Feldman et.al. carried out their

calculation at a fixed wave-vector k, while we have summed over the entire Brillouin zone.

The origin of this dip can also be explained by looking at the joint density of states

(JDOS) represented by green line in Fig. (6.12). This quantity has a dip near ν = 0

reminiscent of the dip in the κ(ν) curves. This indicates that a smooth convolution of

two Green matrices G(k, ν ′) and G(k, ν ′ + ν) (or two smooth densities of states obtained

after summing k over the Brillouin zone), as appeared in the expression (6.5) is mainly

responsible for such a sharp dip in the lattice conductivity at ν = 0. As discussed by

Feldman et .al , this dip at ν = 0 disappears as the system size N → ∞. They have

also suggested an appropriate method to eliminate this dip in a sensible manner, which

allows us to extrapolate the κ(ν) curve from a value at ν > 0 (ν '0) to a value at ν=0.

This extrapolated value of κ(ν) at ν = 0 is nothing but the d.c. value of the lattice

thermal conductivity κ0. In an attempt to calculate (κ0), we have obtained a value of

15.25 W/m/K for Ni50Pd50 alloy at T=110 K.

Direct comparison with the experimental data on these systems is difficult, because the

experimental thermal conductivity also has a component arising out of the contribution

from electrons. Figure. (6.13) shows the temperature dependence of lattice conductiv-

ity. The top panel shows our theoretical result for the Ni99Pd01 alloy at three different

frequencies. The bottom panel shows the experimental data Farrell and Greig 1969 on

the total ( electronic and lattice ) thermal conductivity of the same 99-01 NiPd alloy.

Since the frequency is not mentioned in the experimental data, we assume that it must

be for low frequencies. The best comparison then will be between the middle (black)
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Figure 6.13: Thermal conductivity vs temperature T(K) for NiPd alloys and Amorphous

Si. The top panel shows our results on the lattice conductivity for Ni99Pd01 alloy at

three different frequency cut-off ν. The middle panel shows the lattice conductivity for

amorphous Si [Feldman et al 1993] at three different cut-off frequency, while the panel

at the bottom shows the experimental data [Farrell and Greig 1969] for the total thermal

conductivity (= lattice + electronic contribution) of the same Ni99Pd01 alloy.

curve on the top panel and that in the bottom one. The two agree qualitatively, except

at low temperatures where we expect the electronic contribution to dominate. In order

to understand whether the deviation does arise from the electronic contribution, we have

compared the top panel with the thermal conductivity of amorphous-Si [Feldman et al

1993], shown in the middle panel. In a-Si the electrons near the Fermi level are localized

and hence cannot carry any current. The contribution to thermal conductivity arises from

scattering due to configuration fluctuations in the amorphous material. Qualitatively we

expect the results to be similar to configuration fluctuation scattering in random alloys.

Almost the entire contribution should come from the phonons. The behaviour of the two

panels are quite similar. The origin of the hump in the experimental lattice conductivity
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Figure 6.14: Residual or impurity contribution of the electronic part of the thermal con-

ductivity

can also be understood if we assume Widemann-Franz law and write the residual part of

the electronic contribution of the thermal resistivity as κr = L0T/ρ0(T ). Here L0 is the

Lorenz number and ρ0(T ) is the electrical resistivity. Assuming that the electrical resis-

tivity behaves as ρ0(T ) = A+BT +CT 2 at low temperatures and with a suitable choice

of the parameters, this contribution does show a hump followed by a decreasing behaviour

flattening out at larger temperatures (see Fig 6.14). The sum of the contribution shown

in the top panel of Fig. (6.13) and that in Fig. (6.14) would lead to the experimental

behaviour shown in the bottom panel of Fig. (6.13). This is a plausibility argument

and needs to be confirmed by a detailed calculation of the electronic contribution to the

thermal conductivity. A careful inspection of our results (top panel of Fig. (6.13) in-

dicates that at low temperatures where only low-energy vibrations are excited, κ(T ) is

approximately a quadratic function of T . Figure. (6.15) shows a plot of κ vs T 2 in the low

temperature regime. The calculated curve fits reasonably well with a straight line. This

has been seen in experimental observations [Farrell and Greig 1969]. Additional scattering

processes leading to a different temperature dependence of lattice conductivity become

apparent at higher temperatures. At T >25 K, κ(T ) rises smoothly to a T -independent

saturated value. The dominant mechanism in this regime is the intrinsic harmonic diffu-

sion of higher energy delocalized vibrations. These modes have not been well described

by most previous theories. In Fig. (6.16), we display the frequency dependence of lattice



Chapter 6. Thermal transport in disordered binary alloys 123

0 100 200 300 400 500

T  (K  )
0

0.5

1

1.5

2

   
 (A

rb
itr

ar
y 

Sc
al

e)

Actual Curve
Fitted Curve

2

κ

Low  temperature  behaviour  of      (T)

κ (T) ~  T2
κ

2

Figure 6.15: κ vs T 2 for low temperatures for 50-50 NiPd alloy

conductivity for Ni50Pd50 alloy at various temperatures. The figure clearly shows the

saturation of lattice conductivity as we proceed toward the higher temperatures. The

d.c. value of the conductivity (κ0), which is just extrapolation of κ(ν) curve from a value

at ν > 0 to a value at ν = 0, increases as we increase the temperature. Figure (6.17)

shows the lattice conductivity as a function of frequency at T=100 K for various alloy

compositions. From the figure, it is clear at a glance that the overall shape of frequency

dependence of κ for various alloys of Ni1−xPdx looks similar except for x=0.8 and x=0.9,

where extra structure appears in the frequency dependence. Similar behaviour has also

been observed for x=0.9 in Ni1−xPtx alloy. We believe that this behaviour for Ni1−xPdx

alloy at x=0.8 and 0.9 may be due to the strong disorder in masses, the effect of which

becomes important in the two dilute limit alloys.

The thermal diffusivities D(ν) are important because the effect of disorder is often

manifested in them more directly than in the conductivities. Not only that, thermal

diffusivity also gives an approximate idea about the location of mobility edge as well as

the fraction of delocalized states. In Fig. (6.18) we display the thermal diffusivity D(ν)

vs frequency for various compositions. The extent of the phonon frequency spectrum is
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Figure 6.16: The configuration averaged lattice thermal conductivity vs phonon frequency

ν (THz) at different temperatures T for Ni50Pd50 alloy.

shown by the broad lines. These have been obtained from the phonon density of states

calculations. The density of states is non-zero across this spectrum range. The first

thing to note is that, the region of large diffusivity in the five sets of alloys at the higher

frequency side is not the same. In other words the weakly defined hump in the lower as

well as higher frequency side are located at different positions for different alloys. The low

frequency maximum in diffusivity is a minimum around the 50-50 composition where the

disorder scattering is the maximum. Above 3 THz, there is a smooth decrease of diffusivity

approximately linear in frequency D(ν) ∝ (νc − ν)α , with the critical exponent α ' 1

and a critical frequency νc where D(ν) vanishes to within a very small level of noise.

Figure (6.19) shows a plot of D(ν) vs (νc − ν)α for Ni50Pd50. The allowed phonon states

beyond this frequency must be due to localized phonon modes. The critical exponent

α ' 1 in our case agrees with scaling and other theories of Andersen localization [Lee

and Ramakrishnan 1958]. The critical frequency νc locates the mobility edge above which

the diffusivity is strictly zero in the infinite size limit. Once the mobility edge is located,

the fraction of de-localized states may be obtained by evaluating the area under the D(ν)



Chapter 6. Thermal transport in disordered binary alloys 125

0 1 2 3 4
Frequency (THz)

0

5

10

15

20

25

30

   
(W

/m
/K

)

x=0.1
x=0.2
x=0.5
x=0.7
x=0.8
x=0.9

For Ni   Pd
1-x x

T=100 K

κ

Figure 6.17: Frequency dependence of lattice thermal conductivity for various alloys

Ni1−xPdx at T=100 K.

vs ν curve from ν = 0 to ν = νc. It is clear from Fig. (6.18) that location of mobility

edge varies with composition. Consequently the percentage of de-localized states available

for thermal conduction in the system also varies with composition. An inspection of Fig.

(6.18) determines the location of the mobility edges (νc) for the five different compositions.

Figure (6.20) which shows the position of the mobility edge and the percentage of mobile

phonon states in the spectrum as a function of the composition is quite illustrative. The

maximum percentage of localized states occur at 50-50 composition where we expect

disorder scattering to be a maximum. The mobility edge moves to higher frequencies as

the concentration of Ni increases, but so does the band width of the phonon spectrum. The

minimum percentage of mobile phonon states available for thermal conduction occurs, as

expected, at around the 50-50 composition. A similar behaviour has also been discussed

by Feldman et al 1993 while studying the effects of mass disorder on various Si1−xGex

alloys.
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Figure 6.18: The configuration averaged thermal diffusivities D(ν) for Ni1−xPdx alloys.

(a) x=0.1; (b) x=0.3; (c) x=0.5; (d) x=0.7; (e) x=0.9.The broad line on the frequency

axis shows the extent of the vibrational spectrum.

6.6.2 NiPt alloy : Strong mass and force constant disorder.

It has been our experience [Alam and Mookerjee 2004, Alam and Mookerjee1 2005]

that the effect of disorder in NiPt alloy is more dramatic than NiPd. For instance the

appearance of sharp discontinuities observed in the dispersion where we have resonance

states and consequent increase in the line-width [Alam and Mookerjee 2004].

Figure (6.21) shows the results for disorderedNi50Pt50 alloy. As before, the black curve

represents the lattice conductivity including all kinds of disorder induced corrections while

the red curve stands for the same quantity but using averaged heat currents and without

vertex corrections. The green curve shows the scaled joint density of states. From the
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figure it is clear that as in the case of NiPd, the transition rate ‘τ ’ is strongly dependent

both on the initial and the final energies throughout the phonon frequency (ν). Figure

(6.21) also clarifies that although the effect of disorder corrections to the current terms

is small, but this effect is comparatively more pronounced in Ni50Pt50 than in Ni50Pd50.

The effect of disorder corrections to current and the vertex corrections in the present case

become negligible beyond phonon frequencies ' 2.4 THz. In the low frequency region,

configuration fluctuation effects beyond the mean-field is more pronounced in NiPt than

in NiPd. This may be because of the two simple physical reasons : First, the NiPt is

an alloy where both mass (mPt/ mNi ' 3) as well as force constant (Pt-force constants

are on an average 55% larger than those of Ni) disorder dominates, while in NiPd alloy

the mass disorder (mPd/ mNi ' 1.812) is weaker than NiPt and the force constants are

almost the same for the two constituents. Second, from a purely phenomenological point

of view, there is a larger size mismatch between Ni and Pt in NiPt alloy as compared to

Ni and Pd in NiPd alloy.

The temperature dependence of lattice conductivity for Ni50Pt50 alloy at various cut-

off frequencies are shown in Fig. (6.22). The conductivity increases initially ( in the low
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Figure 6.20: The position of the mobility edge (bottom) and the percentage of mobile

phonon states (top) as a function of the alloy composition for NiPd alloy.

T-regime ) as an approximate quadratic function of temperature and ultimately increases

smoothly to a T-independent saturated value. As far as such dependence of κ(T ) in

the high temperature regime is concerned, the heat in this conduction channel is carried

by non-propagating modes which are strongly influenced by the disorder but mostly not

localized and therefore able to conduct by intrinsic harmonic diffusion. This is a smooth

dependence which closely resembles the specific heat and saturates like the specific heat at

high temperatures. Following Slack 1979 we could call this piece the “minimum thermal

conductivity”. A number of authors have discussed that low temperature dependence of

κ(T ) shows a mild plateau like region. In this regime the heat is mainly carried by the

propagating long wavelength acoustic modes. The complex inelastic scattering processes
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Figure 6.21: Same as Fig. (6.12) but for Ni50Pt50 disordered alloy.

then kill off the low frequency contribution at higher temperatures leaving a peak which

becomes the plateau. However there are situations, where the propagating modes become

reasonably well damped ( as in our calculation ) and are no longer able to carry much heat.

In such cases the contribution of delocalized and poorly conducting vibrations takes over,

giving a net result in good accord with the Kittel’s old idea. Under these circumstances

the plateau like region in the low temperature regime almost disappears. The damping of

propagating modes is also amplified as we make the alloy more and more concentrated.

This can easily be verified by looking at the results of Farrell and Greig 1969, which

shows that as we increase the concentration, the plateau like region goes down and gets

smoother.

The concentration dependence of lattice conductivity at a fixed phonon frequency

ν = 1.05 THz are plotted in Fig. (6.23). The various curves in this figure stand for

various values of the temperature T starting from a lower value of 50 K to a higher

value of 230 K. It is clear from the figure that the concentration dependence is almost

symmetric about x=0.5. It has been discussed by Flicker and Leath 1973 within the

framework of coherent potential approximation that this asymmetry is a function of the

size of the sample chosen i.e. a large N leads to less asymmetry. They have verified this
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statement by performing two calculations one for N=100 and other for N=2000. The

concentration dependence in the later case is more symmetric as compared to the former

ones. In our case, the results shown in Fig. (6.23) are the optimal symmetric structure

for the concentration dependence of κ. This is because our calculations are performed in

the reciprocal space representation which involves the entire lattice.

An interesting challenge remaining in this problem is to calculate the effect of adding

anharmonicity to the model. The reason why one should be interested in calculating the

anharmonicity effect is because in real systems at high temperature phonon-phonon Umk-

lapp scattering becomes the dominant scattering mechanism. This Umklapp scattering

actually arises due to the presence of anharmonic terms in the Hamiltonian. The effect

of this anharmonicity is to flatten the lattice conductivity vs concentration curve.

Fig. (6.24) shows the frequency dependence of diffusivity D(ν) for various alloy compo-

sitions. The thick lines on the frequency axes shows the extent of the frequency spectrum.

It is clear from Fig. (6.24) that there are basically two regions of large thermal diffusivity

: one near the lower frequency region (' 0.5 THz) and the other around a somewhat

higher frequency region (' 1.25 THz). But as we go on increasing the Pt-concentration,
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Figure 6.23: Lattice thermal conductivity vs Pt-concentration for various temperature T

at phonon frequency ν = 1.05 THz.

the former region of large diffusivity starts decreasing gradually and becomes almost flat

for the maximum Pt-concentration of 90%. The latter region of large diffusivity sits on

a portion of the frequency spectrum above the transverse acoustic vibrations. Here the

modes have large velocities and are probably very effective carriers of heat. The approx-

imate linear decrease in diffusivity starts at about 3 THz. But the location of mobility

edge in this case varies with composition in a slightly different way as compared to the

case of NiPd alloy. Fig. (6.25) (bottom) shows the position of the mobility edge νc as a

function of the alloy composition. As the concentration of heavy Pt increases, the band

width of the frequency spectrum (which is proportional to the square root of the mass)

shrinks and the position of the mobility edge within the band also shrinks. Fig. (6.25)

(top) shows the fraction of the frequency band which is extended. When the disorder is

the strongest, i.e. at 50-50 composition, this fraction is a minimum.

One thing is very clear from the above discussion that, in an alloy where mass disorder

dominates and the force constant disorder is weak ( as in the case of NiPd alloy ), the

complex disorder scattering processes try to localize more vibrational modes as compared

to those in an alloy where both mass as well as the force constant disorder dominates
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Figure 6.24: Same as Fig. (6.18) but for Ni50Pt50 alloy.

( as in the case of NiPt alloy ). The result can be interpreted in a slightly different

way as : “the role of force constant disorder in binary alloys is to make the vibrational

eigenstates more delocalized ” , i.e. the more dominant the force constant disorder is, the

more delocalized the vibrational modes will be.

6.7 Conclusion

We have formulated a theory for the calculation of configuration averaged lattice thermal

conductivity and thermal diffusivity based on a realistic model. The augmented space

block recursion allows us to include, in the calculation of our averaged propagators, effects

of joint fluctuations at more than one site. The scattering diagram approach proves to

be useful in analyzing and calculating the disorder corrections to the averaged current.
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Figure 6.25: Same as Fig. (6.20) but for Ni50Pt50 alloy.

These are shown to be the dominant corrections and are related to the self energy. Next in

importance, we have studied the effect of vertex corrections arising out of the correlated

propagation. We have shown explicitly how to obtain these corrections within the ladder

diagram approximation. We have demonstrated through our numerical results that how

this multiple scattering based formalism captures the effect of off-diagonal and environ-

mental disorder present in the problem. A significant contribution of this particular work

beyond the earlier theoretical approaches is the inclusion of force constant fluctuations

properly in the theory. Our efficient Brillouin zone integration codes for disordered al-

loys makes the numerical calculation stable and accurate. We have already shown in the

previous chapter that the approximation involving termination of the matrix continued

fraction expansion of the green matrix retains the essential Herglotz analytic properties of
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the diagonal green function. We have applied the formalism to two realistic disordered al-

loys ; namely NiPd and NiPt. We have shown that the effect of disorder corrections to the

current and the vertex correction on the overall shape of lattice thermal conductivity for

both the alloys are very small. Comparatively the effect is found to be more pronounced

in NiPt alloy, which is due to the presence of strong disorder both in masses and force

constants in this alloy. The saturation of lattice conductivity at higher temperatures has

been shown for both the alloys. The numerical results on the harmonic diffusivity provide

an interesting idea about the localization and delocalization of the vibrational eigenstates.

It says that in disordered binary alloys “ the more stronger the force constant disorder is,

the more delocalized the vibrational modes will be” . That is why NiPt alloy has larger

fraction of delocalized states as compared to that in NiPd alloy.



Chapter 7

An assessment of the work and future plans

7.1 Concluding Remarks

In this chapter, we shall assess our work: that is, specify our initial plan of work, assess

how much we have achieved and finally lay out our future plans.

Our aim was to systematically develop a theoretical scheme to study vibrational prop-

erties of disordered alloys based on a recursion method. This includes the phonon dis-

persion relation, disorder induced line widths, inelastic neutron scattering cross section,

lattice thermal conductivity and thermal diffusivity. The configuration averaging is done

using the augmented space method combined with a generalized scattering diagram tech-

nique. In the following, we shall briefly describe the steps we followed to reach our goal.

In chapter 1 we have presented an overview of the lattice dynamics calculation for a 3D

realistic system. We have then defined the basic quantities of interest like phonon density

of states, coherent structure factors, phonon line-widths, inelastic neutron scattering cross

sections and thermal conductivity. we have also given a brief description of the recursion

method as well as a generalized version of this, called Block Recursion Method , which

calculate the entire Green matrix and self-energy matrix.

In chapter 2, we have described the augmented space recursion method for configura-

tion averaging in disordered systems. Because of the presence of off-diagonal disorder in

the phonon problem, it becomes very difficult to include the effects of extended environ-

ment. We would like to mention that, the recursion calculations can be carried out much

faster and for many more recursive steps exactly, if it is performed on a subspace of the

135
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original augmented space reduced by using the symmetries of both the underlying lattice

and random configurations on the lattice.

In chapter 3, we have derived the augmented space recursion formulation for phonons

in disordered alloys in the reciprocal space representation. In this formulation the real

space part was taken into account exactly and there was no truncation of this in the

recursion. We have investigated the phonon dispersion, disorder induced line-widths etc.

in three different alloy systems, the choice of which is not arbitrary. The comparison of

our results with experiments and other recent theories comes out to be quite satisfactory.

For the entire numerical studies in the previous chapter, however, we had no prior

information about the species dependence of the force constants but rather choose a

set of force constants empirically. A better understanding of the role of disorder in the

vibrational properties of random alloys could be achieved with prior information about the

force constants, which could be obtained from more microscopic theories. In chapter 4 we

have rectified this and make use of a first principles calculation (i.e. the Density Functional

Perturbation Theory) for phonons to obtain the dynamical matrices themselves from this

calculation. Further calculations are performed using these first principles parameters.

Chapter 5 has been devoted for the study of inelastic neutron scattering in random

binary alloys. A multiple scattering diagram approach has been combined with augmented

space representation to separate the coherent and incoherent part of the total inelastic

scattering cross section. Since we require the off diagonal elements of the Green matrix

for the calculation of cross section, we have generalized the ordinary recursion to a block

recursion technique. The termination procedure used by us is rather brute force. In the

termination process we have repeatedly invert a 3×2 (3-modes) matrix for 103 times,

which may carry inaccuracies in the calculation. Using a better termination scheme will

improve the accuracy of the calculation. This we may think over in nearest future.

It has been known that the thermal conductivity expression based on traditional re-

ciprocal space, that is , based on Bloch’s theorem, is unsuitable for disordered systems as

they do not enjoy potential periodicity. So in chapter 6, we have obtained an alternate

expression where the quantum states are directly labeled by energy and frequency rather

than by modes and crystal momentum indeces. We have proposed a modified expression

for the lattice thermal conductivity as a convolution of a frequency-temperature depen-
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dent transition matrix and energy resolved JDOS. We have then presented a formulation

for the configuration averaged lattice thermal conductivity in random alloys. The disor-

der scattering renormalizes the averaged current to an effective current and the average

VCA to a configuration averaged propagator beyond the CPA approximation. We have

also calculated the configuration averaged thermal diffusivity within the harmonic ap-

proximation. Finally we have set up a computationally feasible program and applied it to

NiPd and NiPt alloys. We have reported a quadratic temperature dependence of thermal

conductivity in the low temperature regime which is similar to the findings of previous

theories and experiment. The frequency dependence of lattice thermal conductivity for

x>0.7, in both the alloys Ni1−xPdx and Ni1−xPtx, looks quite unusual, which is due to

the strong disorder in masses. The thermal diffusivity gives an idea about the location of

mobility edge as well as the fraction of localized and de-localized states. A comparative

study of two alloys (NiPd and NiPt) predicted a very important result that “ the role

of force constant disorder in binary alloys is to make the vibrational eigenstates more

delocalized ”

7.2 Future directions

As far as the thermal conductivity calculation is concerned, so far we have presented a

formulation which calculates only the lattice contribution to the thermal conductivity.

For comparison with experiment we have assumed the validity of thermal analogue of

Matthiessen’s rule, and calculate the electronic contribution to thermal conductivity using

the Wiedemann-Franz law. We have then summed up the two contributions to finally

compare our results with the experiment. This is however a plausibility argument and

need to be confirmed by a detailed calculation of the electronic contribution to the thermal

conductivity. We shall be taking this as one of our future project and derive a formulation

for the calculation of the electronic contribution to thermal conductivity for disordered

binary alloys.

Another future direction is to repeat the entire calculation of this thesis for systems

with more than one atom per unit cell. The basic idea is to look at the effects of optical

modes on the properties studied presently. The augmented space recursion is ideally
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suitable for such a study. The electronic problem in systems with more than one atom

per unit cell has already been developed by our group.

The investigation of the nature of electron-phonon interaction in disordered alloys is

another area of interest which can be thought of in future.

We also have a plan to study the behaviour of phonon excitations in random ternary

alloys.

A PhD. programme is always time bound and a person’s thirst for knowledge may not

find it’s fulfillment in this limited span of time. But this endeavor may be considered as

a training ground for research and it does elevate his thirst for more. I cannot assess how

much knowledge of disorder physics I have been able to pick up, but I sincerely believe

that this work with all its limitations will encourage me to go on working in this vastly

exciting area of materials studies.
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1. Operations in augmented reciprocal space

The main operations of the effective dynamical matrix on a general state |k⊗{C}〉 =

||{C}〉 in the augmented reciprocal space are given below, where {C} = {R1, R2, . . . , Rc}
indicates the cardinality sequence with | ↓〉 configuration at R1, R2, . . . , Rc sites. This is

required to implement the recursion procedure :

(∑

R

p↓
R ⊗ PR

)
‖ {C}〉 =

(∑

R

p↓
R ⊗ PR

)
1√
N

∑

R′

exp (ık ·R′)|R′, {C}〉

= ‖ {C}〉 δ (R0 ∈ {C}) (R0 is any reference site)(∑

R

T↑↓
R ⊗ PR

)
‖ {C}〉 = ‖ {C ±R0}〉

(∑

R

∑

χ

I ⊗ TR,R+χ

)
‖ {C}〉 =

(∑

R

∑

χ

I ⊗ TR,R+χ

)
1√
N

∑

R′

exp (ık ·R′)|R′, {C}〉

= s(k) ‖ {C − χ}〉 (χ is a lattice vector)

where, s(k) =
∑

χ exp (−ık · χ)

(∑

R

∑

χ

(
p↓

R + p↓
R+χ

)
⊗ TR,R+χ

)
‖ {C}〉 = s(k) ‖ {C − χ}〉

[
δ
(
R0 ∈ {C − χ}

)

+δ (R0 + χ ∈ {C − χ})
]

(∑

R

∑

χ

(
T↑↓

R + T↑↓
R+χ

)
⊗ TR,R+χ

)
‖ {C}〉 = s(k)

[
‖ {C − χ} ±R0〉

+ ‖ {C − χ} ± (R0 + χ)〉
]

(∑

R

∑

χ

(
p↓

Rp↓
R+χ

)
⊗ TR,R+χ

)
‖ {C}〉 = s(k) ‖ {C − χ}〉

[
δ
(
R0 ∈ {C − χ}

)

δ (R0 + χ ∈ {C − χ})
]

(∑

R

∑

χ

(
T↑↓

R T↑↓
R+χ

)
⊗ TR,R+χ

)
‖ {C}〉 = s(k)

[
‖ {C − χ} ±R0 ± (R0 + χ)〉

]

(∑

R

∑

χ

(
p↓

R+χT
↑↓
R + p↓

RT↑↓
R+χ

)
⊗ TR,R+χ

)
‖ {C}〉 = s(k)

[
‖ {C − χ} ±R0〉

δ ((R0 + χ) ∈ {C − χ})+

‖ {C − χ} ± (R0 + χ)〉
δ (R0 ∈ {C − χ})

]
(.1)
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We note that all operations involve only manipulations of the configuration part of the

state [Biswas et al 1995] ( i.e. manipulations of the cardinality sequence only ). The

operation of the effective dynamical matrix thus entirely takes place in the configuration

space and the calculation does not involve the real space H at all. This is an enormous

simplification over the standard augmented space recursion described earlier Saha et al

1994, where the entire reduced real space part as well as the configuration part was

involved in the recursion process. Since one can efficiently store the configurations in bits

of words so now the calculation becomes much simpler. These operations finally involve

simple bit manipulation routines.

It is interesting to note that the second operation in the above list creates a new

configuration. In the next step of recursion the third operation translates the entire

operation by lattice translations {χ}. The cluster of configurations thus ‘travel’ across

the lattice as recursion proceeds.
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